1.Exploring Multi-target Effect of Erzhiwan on Improving Myocardial Injury in Ovariectomized Mice Based on Non-targeted Metabolomics
Ying YANG ; Jing HU ; Pei LI ; Ruyuan ZHU ; Zhiguo ZHANG ; Haixia LIU ; Yanjing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):74-84
		                        		
		                        			
		                        			ObjectiveTo explore the target of Erzhiwan in reducing myocardial injury in ovariectomized mice through non-targeted myocardial metabolomics combined with experimental verification. MethodsOvariectomized mouse model was selected, 40 female C57BL/6 mice were randomly divided into sham operation group, model group, estrogen group(estradiol valerate, 1.3×10-4 g·kg-1), Erzhiwan low and high dose groups(3.12, 9.36 g·kg-1), with 8 mice in each group. Each administration group was given the corresponding dose of Erzhiwan by gavage, and the sham operation group and model group were given equal volume of distilled water by gavage for 12 weeks. Echocardiography was used to detect cardiac function, hematoxylin-eosin(HE) staining was used to observe myocardial morphological changes, and enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of estrogen, N-terminal pro-brain natriuretic peptide(NT-proBNP), hypersensitive troponin T(hs-TnT), total cholesterol(TC), triglyceride(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), interleukin(IL)-1β, IL-18 and tumor necrosis factor-α(TNF-α). The non-targeted metabolomics of mouse myocardium were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the differential metabolites and corresponding metabolic pathways were obtained. The mRNA expression levels of phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in mouse myocardial tissues were detected by real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the protein expression levels of PI3K, Akt, phosphorylated(p)-Akt were detected by Western blot. ResultsCompared with the sham operation group, the model group showed abnormal cardiac function, increased myocardial fiber space, cardiomyocyte atrophy, sarcoplasmic aggregation, and occasional dissolution or rupture of muscle fiber, the level of estrogen in the serum was decreased, the levels of NT-proBNP, hs-TnT, IL-1β, IL-18, TNF-α, TG, TC and LDL-C were increased, and the level of HDL-C was decreased(P<0.01). Compared with the model group, Erzhiwan could increase the level of estrogen, improve the abnormal cardiac function, reduce the pathological injury of myocardial tissue, decrease the levels of myocardial injury markers(NT-proBNP, hs-TnT) and inflammatory factors(IL-1β, IL-18, TNF-α), decrease the levels of TG, TC, LDL-C, and increased the level of HDL-C(P<0.01). The results of non-targeted myocardial metabolomics showed that 31 of the 162 differential metabolites between the model group and sham operation group were significantly adjusted after administration of Erzhiwan, which were mainly glycerol phospholipid metabolites. Pathway enrichment results showed that Erzhiwan mainly affected glycerophospholipid metabolic pathway, PI3K-Akt pathway, cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG) pathway and other metabolic pathways. Compared with the sham operation group, the levels of phosphatidylcholine(PC, 11 types) and phosphatidylethanolamine(PE, 5 types) in mouse myocardial tissue of the model group were increased(P<0.05, P<0.01), and the mRNA and protein expressions of PI3K and p-Akt were decreased(P<0.05, P<0.01). Compared with the model group, the levels of PC(11 types) and PE(5 types) were decreased(P<0.05, P<0.01) in myocardial tissue of Erzhiwan group, the mRNA and protein expressions of PI3K and p-Akt were elevated(P<0.01). ConclusionErzhiwan can alleviate the pathological injury of myocardium in ovariectomized mice, improve the abnormal cardiac function, improve lipid metabolism disorder, and reduce the levels of myocardial injury markers and inflammatory factors, which involves a number of signaling and metabolic pathways in the heart, among which glycerophospholipid metabolism pathway and PI3K/Akt pathway may have key roles. 
		                        		
		                        		
		                        		
		                        	
2.Impact of childhood maltreatment and sleep quality on depressive symptoms among middle school students
Chinese Journal of School Health 2025;46(1):73-77
		                        		
		                        			Objective:
		                        			To explore the impact of sleep quality, experience of childhood maltreatment, and their interaction on depressive symptoms among middle school students, so as to provide the reference for early intervention of depressive symptoms among middle school students.
		                        		
		                        			Methods:
		                        			From September to December 2023, a questionnaire survey was conducted among 1 231 students from two secondary schools in Harbin, Heilongjiang Province by a convenient sampling method. The survey included general demographic information, Childhood Trauma Questionnaire Short Form, Pittsburgh Sleep Quality Index and Short Version of Center for Epidemiological Studies Depression Scale. The  Chi square test was used to analyze the differences in depressive symptom, sleep quality and childhood maltreatment among students with different demographic characteristics. Correlation analysis was conducted using Logistic regression, and interaction analysis was performed by both additive and multiplicative interaction models.
		                        		
		                        			Results:
		                        			The detection rate of depressive symptoms among middle school students was 22.7%, and the rate for high school students (35.2%) was significantly higher than that for middle school students (17.0%) ( χ 2=50.35,  P <0.01). The detection rates of depressive symptoms among middle school students with a history of childhood maltreatment and poor sleep quality were 45.8% and 44.0%, respectively. Multivariate Logistic regression analysis showed that compared to students without a history of childhood maltreatment, students with a history of childhood maltreatment had a higher risk of depressive symptoms ( OR =4.49,95% CI =3.31~ 6.09 ,  P <0.01);students with poor sleep quality had a higher risk of depressive symptoms than students with good sleep quality ( OR = 5.99,95% CI =4.37~8.22,  P <0.01).The interaction results showed that the presence of childhood maltreatment and poor sleep quality had an additive interaction on the occurrence of depression in middle school students. Compared with students without childhood maltreatment and having good sleep quality, students with childhood maltreatment and poor sleep quality had a 22.49 times higher risk of developing depression ( OR =22.49,95% CI =14.22~35.59, P <0.01).
		                        		
		                        			Conclusion
		                        			Depressive symptoms among middle school students are associated with childhood maltreatment and poor sleep quality, and there is an additive interaction between childhood maltreatment and poor sleep quality on the impact of depressive symptoms.
		                        		
		                        		
		                        		
		                        	
3.Depressive symptoms and associated factors among middle school and college students from 2021 to 2023 in Hunan Province
Chinese Journal of School Health 2025;46(1):96-101
		                        		
		                        			Objective:
		                        			To investigate the current status and trends of depressive symptoms among middle school and college students in Hunan Province, and to explore the primary related factors of depressive symptoms, so as to provide a scientific basis for strengthening mental health among students.
		                        		
		                        			Methods:
		                        			A total of 279 382 students in Hunan Province were selected through a stratified cluster random sampling method from 2021 to 2023. National Survey Questionnaire on Common Diseases and Health Influencing Factors among Students was adopted for the survey, and the Center for Epidemiological Studies Depression Scale was used to assess their depressive symptoms. The χ 2 test and trend χ 2 test were used to analyze depressive symptoms prevalence and trends, and multivariable Logistic regression was used to analyze the related factors of depressive symptoms.
		                        		
		                        			Results:
		                        			The prevalence of depressive symptoms among students in Hunan Province from 2021 to 2023 were 19.66%, 20.17% and 21.47%, respectively, showing an upward trend ( χ 2 trend =9.07,  P <0.01). In addition, the results of the multivariable Logistic regression analysis showed that students with healthy diet ( OR=0.43, 95%CI =0.40-0.45), adequate sleep ( OR=0.88, 95%CI =0.86-0.90), and acceptable screen time ( OR=0.61, 95%CI =0.60-0.62) had lower risks in depressive symptoms detection, while students with smoking ( OR= 1.95, 95%CI =1.88-2.02), secondhand smoke exposure ( OR=1.33, 95%CI =1.30-1.36) and Internet addiction ( OR= 4.19 , 95%CI =4.05-4.34) had higher risks in depressive symptoms detection, with differences in the degree of association among different genders, educational stages and urban rural groups ( OR=0.40-6.04, Z =-12.69-11.98) ( P <0.05).
		                        		
		                        			Conclusions
		                        			There is an increasing trend of depressive symptoms among middle school and college students in Hunan Province from 2021 to 2023.Targeted depression prevention measures should be taken for students with different demographic characteristics to promote their mental health.
		                        		
		                        		
		                        		
		                        	
4.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
		                        		
		                        			 Objectives:
		                        			Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study. 
		                        		
		                        			Methods:
		                        			Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting. 
		                        		
		                        			Results:
		                        			Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed. 
		                        		
		                        			Conclusions
		                        			In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH. 
		                        		
		                        		
		                        		
		                        	
5.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
		                        		
		                        			 Objectives:
		                        			Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study. 
		                        		
		                        			Methods:
		                        			Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting. 
		                        		
		                        			Results:
		                        			Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed. 
		                        		
		                        			Conclusions
		                        			In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH. 
		                        		
		                        		
		                        		
		                        	
6.Scientific basis for acupuncture combined with neural stem cells for repairing spinal cord injury
Xiaomeng HUANG ; Zhilan ZHANG ; Wenya SHANG ; Jing HUANG ; Huilin WEI ; Bing LI ; Yafeng REN
Chinese Journal of Tissue Engineering Research 2025;29(19):4111-4121
		                        		
		                        			
		                        			BACKGROUND:Spinal cord injury is a neurological disorder caused by traumatic or non-traumatic events,often leading to severe functional impairment below the injured segment.In recent years,neural stem cell transplantation has been considered to have significant therapeutic potential in regulating the inflammatory response after spinal cord injury,inhibiting excessive proliferation of glial scars,and promoting nerve regeneration. OBJECTIVE:To review and discuss the potential mechanism of action of acupuncture and neural stem cell transplantation therapy in inhibiting spinal cord injury-induced secondary injury,and to delve into the scientific basis for its treatment of spinal cord injury. METHODS:PubMed,Elsevier,WanFang,and CNKI databases were searched using"spinal cord injury,acupuncture,neural stem cells,SDF-1α/CXCR4 axis"as Chinese and English search terms.Totally 96 articles were finally included.The research findings of acupuncture combined with neural stem cells in the treatment of spinal cord injury were summarized and analyzed,and the mechanism of this combination therapy in the treatment of secondary injury after spinal cord injury was summarized. RESULTS AND CONCLUSION:(1)The stromal-derived factor 1α(SDF-1α)/chemokine receptor 4(CXCR4)axis plays a crucial role in neural stem cell transplantation for spinal cord injury.This signaling mechanism not only affects neural stem cell migration,proliferation,and differentiation,but is also a key factor in determining the efficiency of stem cell homing to the injury site.Therefore,the regulation of targeting this axis is of great significance in enhancing the therapeutic effect of spinal cord injury.(2)Acupuncture,as a traditional Chinese medicine therapy,shows unique advantages in the regulation of secondary injury in spinal cord injury.It can effectively reduce secondary injury after spinal cord injury by regulating inflammatory response,inhibiting apoptosis,improving microcirculation,reducing glial scar formation,and counteracting oxidative stress.(3)Acupuncture was also able to influence the expression and function of the SDF-1α/CXCR4 axis,thereby enhancing the homing and survival ability of neural stem cells and promoting nerve regeneration and functional recovery.(4)The therapy combining acupuncture and stem cell transplantation is an innovative treatment strategy for spinal cord injury and suitable for repairing neural circuits.It combines the wisdom of traditional Chinese medicine with the advantages of modern biotechnology,providing a new treatment option for spinal cord injury patients.However,this combination therapy is still in the research and exploration stage,and its long-term efficacy and safety need to be further verified.(5)Taken together,acupuncture and neural stem cell transplantation for the treatment of spinal cord injury has great potential for clinical application,but in-depth research and optimization of treatment options are still needed.In the future,we look forward to further revealing the efficacy mechanism and optimal indications of this therapy through more clinical trials and mechanism studies,so as to bring better hope of recovery and more efficient therapeutic effects to spinal cord injury patients.
		                        		
		                        		
		                        		
		                        	
7.Effect of midazolam on neuronal damage in ischemic stroke rats by regulating the PINK1/PARKIN signaling pathway
Junli ZHANG ; Yuanyuan LI ; Jing YIN ; Hongyuan YANG ; Yaowu BAI
Journal of Pharmaceutical Practice and Service 2025;43(6):288-292
		                        		
		                        			
		                        			Objective To investigate the effect of midazolam on neuronal damage in ischemic stroke (IS) rats and its regulatory effect on PTEN-induced putative kinase 1 (PINK1)/E3 ubiquitin ligase (PARKIN) signaling pathway. Methods An IS rat model was established using arterial occlusion method. The rats with successful model were randomly divided into IS group, drug-low, medium, high-dose (drug-L, M, H, 30, 60, 90 mg/kg midazolam) groups, drug-H+autophagy inhibitor 3-MA group (90 mg/kg midazolam+30 mg/kg 3-MA), and rats with only isolated blood vessels were used as sham surgery groups. Each group received corresponding doses of drugs or physiological saline intervention, and the neurological function scoring, brain histopathology, neuronal apoptosis, ultrastructure, and expression of PINK1, PARKIN, microtubule-associated protein 1 light chain 3 (LC3), and P62 protein in mitochondria were detected. Results Compared with the IS group, the pathological damage of the drug-L group, drug-M group, and drug-H group was improved, and autophagosomes showed an increasing trend, the expression of PINK1, PARKIN, and LC3 proteins increased, the neurological function score, neuronal apoptosis rate, and P62 protein obviously decreased in a dose-dependent manner (P<0.01 or P<0.001); compared with the drug-H group, the pathological damage in the drug-H+3-MA group increased and autophagosomes decreased, the expression of PINK1, PARKIN, and LC3 proteins decreased, the neurological function score, neuronal apoptosis rate, and P62 protein obviously increased (P<0.001). Conclusion Midazolam induced mitochondrial autophagy in IS rats by activating the PINK1/PARKIN signaling pathway, neuronal apoptosis was reduced and neuronal damage were improved in IS rats.
		                        		
		                        		
		                        		
		                        	
8.The inhibitory effect of lidocaine by different administration routes on cardiovascular stress response during tracheal intubation of anesthetic intubation
Jing GUO ; Jinlong KANG ; Qiang LI ; Lin ZHAO ; Ji LIU ; Xuewu XU
Journal of Pharmaceutical Practice and Service 2025;43(6):303-306
		                        		
		                        			
		                        			Objective To investigate the preventive effects of lidocaine administered through different routes on cardiovascular stress responses during anesthesia tracheal intubation. Methods Total 120 patients scheduled for elective surgery under general anesthesia were randomly divided into three groups: intravenous injection group (group IV), throat spray group (group LJ), and control group (group CT), with 40 patients in each. Group IV received 50 mg of lidocaine via intravenous injection 1 minute before tracheal intubation. Group LJ received 50 mg of lidocaine sprayed into the pharyngeal cavity, glottis, and subglottic area. Group CT did not receive any treatment, and the remaining procedures were performed following the routine general anesthesia induction protocol. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were recorded at four time points: T0 (before tracheal intubation), T1 (immediately after tracheal intubation), T2 (3 minutes after intubation), and T3 (5 minutes after intubation). Statistical analysis of the data was performed using SPSS 22.0. Results There were no significant differences in HR at various time points within the group LJ. The changes in HR in the group IV and group CT were different statistically from those in the throat spray group. The blood pressure of patients in all three groups increased to varying degrees immediately after tracheal intubation, with the group CT showing particularly significant changes that differed significantly from both the group IV and the group LJ. The group LJ rapidly returned to levels close to those before intubation. Conclusion The preventive effects of lidocaine on stress responses during tracheal intubation were different depending on the route of administration. The inhibitory preventive effect of the throat spray method was superior to that of intravenous lidocaine, especially in preventing changes in heart rate.
		                        		
		                        		
		                        		
		                        	
9.Measles, rubella, and mumps antibody seroprevalence among the children aged 18 years and younger in Karamay City, Xinjiang Uygur Autonomous Region
Meili WU ; Xia LI ; Ling ZUO ; Liping RONG ; Jing WANG ; Feng WANG
Shanghai Journal of Preventive Medicine 2025;37(3):239-243
		                        		
		                        			
		                        			ObjectiveTo understand the measles, rubella, and mumps antibody seroprevalence among the children aged 18 years and younger in Karamay City, and to evaluate the effectiveness of vaccination. MethodsA stratified whole cluster random sampling method was used to investigate the antibody seroprevalence of measles, rubella, and mumps among the healthy children aged 18 years and younger in Karamay City, and to further analyze the positive antibody rates and the geometric mean concentration (GMC) of antibodies. ResultsA total of 620 people were investigated, and the positive rates of IgG to measles, rubella, and mumps were 72.74%,62.26%, and 86.45%, respectively, with a GMC of308.94 mIU·mL-1, 21.81 mIU·mL-1, and 249.10 U·mL-1. There were statistically significant differences in the positive rates of antibodies to measles, rubella, and mumps among different age groups (χ2measles=76.707, P<0.001; χ2rubella=60.804, P<0.001; χ2mumps=35.407, P<0.001). The differences in positive rates were statistically significant among individuals with different intervals from the time of their last dose vaccination (χ2measles=60.533, P<0.001; χ2rubella=46.331, P<0.001; χ2mumps=22.825, P<0.001). ConclusionThe antibody levels of measles, rubella and mumps among the people aged 18 years and younger in Karamay City are found to be low. Two doses of measles-mumps-rubella (MMR) vaccine should be given to children born before 2020, and if necessary, supplementary immunization with MMR vaccine should be carried out before they are enrolled in nursery and kindergarten. Additionally, regular population-based antibody surveillance should be conducted to promptly identify the people with weak immunity, which is conducive to effectively reducing and controlling the epidemic situation of measles, rubella and mumps in schools. 
		                        		
		                        		
		                        		
		                        	
10.Lactate Transferase Function of Alanyl-transfer t-RNA Synthetase and Its Relationship With Exercise
Ying-Ying SUN ; Zheng XING ; Feng-Yi LI ; Jing ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1337-1348
		                        		
		                        			
		                        			Lactylation (Kla), a protein post-translational modification characterized by the covalent conjugation of lactyl groups to lysine residues in proteins, is widely present in living organisms. Since its discovery in 2019, it has attracted much attention for its role in regulating major pathological processes such as tumorigenesis, neurodegenerative diseases, and cardiovascular diseases. By mediating core biological processes such as signal transduction, epigenetic regulation, and metabolic homeostasis, lactylation contributes to disease progression. However, the lactylation donor lactyl-CoA has a low intracellular concentration, and the specific enzyme catalyzing lactylation is not yet clear, which has become an urgent issue in lactate research. A groundbreaking study in 2024 found that alanyl-transfer t-RNA synthetase 1/2 (AARS1/2), members of the aminoacyl-tRNA synthetase (aaRS) family, can act as protein lysine lactate transferases, modifying histones and metabolic enzymes directly with lactate as a substrate, without relying on the classical substrate lactyl-CoA, promoting a new stage in lactate research. Although exercise significantly increases lactate levels in the body and can induce changes in lactylation in multiple tissues and cells, the regulation of lactylation by exercise is not entirely consistent with lactate levels. Research has found that high-intensity exercise can induce upregulation of lactate at 37 lysine sites in 25 proteins of adipose tissue, while leading to downregulation of lactate at 27 lysine sites in 22 proteins. The level of lactate is not the only factor regulating lactylation through exercise. We speculate that the lactate transferase AARS1/2 play an important role in the process of lactylation regulated by exercise, and AARS1/2 should also be regulated by exercise. This review introduces the molecular biology characteristics, subcellular localization, and multifaceted biological functions of AARS, including its canonical roles in alanylation and editing, as well as its newly identified lactate transferase activity. We detail the discovery of AARS1/2 as lactylation catalysts and the specific process of them as lactate transferases catalyzing protein lactylation. Furthermore, we discuss the pathophysiological significance of AARS in tumorigenesis, immune dysregulation, and neuropathy, with a focus on exploring the expression regulation and possible mechanisms of AARS through exercise. The expression of AARS in skeletal muscle regulated by exercise is related to exercise time and muscle fiber type; the skeletal muscle AARS2 upregulated by long-term and high-intensity exercise catalyzes the lactylation of key metabolic enzymes such as pyruvate dehydrogenase E1 alpha subunit (PDHA1) and carnitine palmitoyltransferase 2 (CPT2), reducing exercise capacity and providing exercise protection; physiological hypoxia caused by exercise significantly reduces the ubiquitination degradation of AARS2 by inhibiting its hydroxylation, thereby maintaining high levels of AARS2 protein and exerting lactate transferase function; exercise induced lactate production can promote the translocation of AARS1 cytoplasm to the nucleus, exert lactate transferase function upon nuclear entry, regulate histone lactylation, and participate in gene expression regulation; exercise induced lactate production promotes direct interactions between AARS and star molecules such as p53 and cGAS, and is widely involved in the occurrence and development of tumors and immune diseases. Elucidating the regulatory mechanism of exercise on AARS can provide new ideas for improving metabolic diseases and promote health through exercise. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail