1.Effects of manipulating lactate dehydrogenase gene on metabolism of HEK-293 and production of human adenovirus.
Junqing MIAO ; Xiaoping YI ; Xiangchao LI ; Yingping ZHUANG
Chinese Journal of Biotechnology 2023;39(9):3863-3875
Reducing lactate accumulation has always been a goal of the mammalian cell biotechnology industry. When animal cells are cultured in vitro, the accumulation of lactate is mainly the combined result of two metabolic pathways. On one hand, glucose generates lactate under the function of lactate dehydrogenase A (LDHA); on the other hand, lactate can be oxidized to pyruvate by LDHB or LDHC and re-enter the TCA cycle. This study comprehensively evaluated the effects of LDH manipulation on the growth, metabolism and human adenovirus (HAdV) production of human embryonic kidney 293 (HEK-293) cells, providing a theoretical basis for engineering the lactate metabolism in mammalian cells. By knocking out ldha gene and overexpression of ldhb and ldhc genes, the metabolic efficiency of HEK-293 cells was effectively improved, and HAdV production was significantly increased. Compared with the control cell, LDH manipulation promoted cell growth, reduced the accumulation of lactate and ammonia, significantly enhanced the efficiency of substrate and energy metabolism of cells, and significantly increased the HAdV production capacity of HEK-293 cells. Among these LDH manipulation measures, ldhc gene overexpression performed the best, with the maximum cell density increased by about 38.7%. The yield of lactate to glucose and ammonia to glutamine decreased by 33.8% and 63.3%, respectively; and HAdV titer increased by at least 16 times. In addition, the ATP production rate, ATP/O2 ratio, ATP/ADP ratio and NADH content of the modified cell lines were increased to varying degrees, and the energy metabolic efficiency was significantly improved.
Animals
;
Humans
;
L-Lactate Dehydrogenase/genetics*
;
Lactic Acid
;
Adenoviruses, Human
;
Ammonia
;
HEK293 Cells
;
Glucose/metabolism*
;
Adenosine Triphosphate/metabolism*
;
Kidney/metabolism*
;
Mammals/metabolism*
2.Preparation and application of rabbit polyclonal antibody against human lactate dehydrogenase C4(LDHC4).
Axiu HUANG ; Caiyun DENG ; Siyu YANG ; Qinglian ZHANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1118-1124
Objective To prepare rabbit polyclonal antibody specifically against human lactate dehydrogenase C4 (LDHC4). Methods Site-directed mutation was performed by PCR to generate the mutated LDHC gene, and the mutated gene was ligated into the pET-28a vector to form the pET-28a-LDHC recombinant expression vector. The recombinant vector was introduced into E. coli BL21 (DE3), and LDHC4 protein was obtained by induced expression. The recombinant protein was used as an antigen to immunize New Zealand rabbits, and the antiserum was obtained after three boosted immunizations. The titer of the antiserum against LDHC4 were detected by ELISA. Western blot was used to detect the specificity of the antiserum, and immunohistochemistry was used to detect the expression of LDHC4 in human triple-negative breast cancer tissue. Results A specific rabbit anti-human LDHC4 polyclonal antibody was obtained with an antibody titer of 1:51 200. The antibody can be used for Western blot and immunohistochemistry. Conclusion The specific rabbit anti-human LDHC4 polyclonal antibody is successfully prepared.
Humans
;
Rabbits
;
Animals
;
Escherichia coli/genetics*
;
Antibodies
;
Enzyme-Linked Immunosorbent Assay
;
L-Lactate Dehydrogenase/metabolism*
;
Blotting, Western
;
Antibody Specificity
3.Circadian effects of ionizing radiation on reproductive function and clock genes expression in male mouse.
Fenju QIN ; Ningang LIU ; Jing NIE ; Tao SHEN ; Yingjie XU ; Shuxian PAN ; Hailong PEI ; Guangming ZHOU
Environmental Health and Preventive Medicine 2021;26(1):103-103
BACKGROUND:
Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far.
METHODS:
Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-β, or Ror-γ.
RESULTS:
Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-β, or Ror-γ) in testis, with alteration in the rhythm parameters.
CONCLUSION
These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.
ARNTL Transcription Factors/genetics*
;
Acid Phosphatase
;
Animals
;
CLOCK Proteins/genetics*
;
Circadian Rhythm/radiation effects*
;
Epididymis/radiation effects*
;
Gene Expression/radiation effects*
;
Genitalia, Male/radiation effects*
;
Glucosephosphate Dehydrogenase
;
L-Iditol 2-Dehydrogenase
;
L-Lactate Dehydrogenase
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Models, Animal
;
Nuclear Receptor Subfamily 1, Group F, Member 1/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 2/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 3/genetics*
;
RNA, Messenger/genetics*
;
Radiation Exposure
;
Radiation, Ionizing
;
Reproductive Physiological Phenomena/radiation effects*
;
Sperm Motility/radiation effects*
;
Spermatozoa/radiation effects*
;
Testis/radiation effects*
4.Expression of a Lactobacillus casei L-lactate dehydrogenase mutant in Pichia pastoris for asymmetric reduction of phenylpyruvate.
Ting ZHANG ; Jianfang LI ; Die HU ; Chuang LI ; Bochun HU ; Minchen WU
Chinese Journal of Biotechnology 2020;36(5):959-968
To improve the productivity of L-phenyllactic acid (L-PLA), L-LcLDH1(Q88A/I229A), a Lactobacillus casei L-lactate dehydrogenase mutant, was successfully expressed in Pichia pastoris GS115. An NADH regeneration system in vitro was then constructed by coupling the recombinant (re) LcLDH1(Q88A/I229A) with a glucose 1-dehydrogenase for the asymmetric reduction of phenylpyruvate (PPA) to L-PLA. SDS-PAGE analysis showed that the apparent molecular weight of reLcLDH1(Q88A/I229A) was 36.8 kDa. And its specific activity was 270.5 U/mg, 42.9-fold higher than that of LcLDH1 (6.3 U/mg). The asymmetric reduction of PPA (100 mmol/L) was performed at 40 °C and pH 5.0 in an optimal biocatalytic system, containing 10 U/mL reLcLDH1(Q88A/I229A), 1 U/mL SyGDH, 2 mmol/L NAD⁺ and 120 mmol/L D-glucose, producing L-PLA with 99.8% yield and over 99% enantiomeric excess (ee). In addition, the space-time yield (STY) and average turnover frequency (aTOF) were as high as 9.5 g/(L·h) and 257.0 g/(g·h), respectively. The high productivity of reLcLDH1(Q88A/I229A) in the asymmetric reduction of PPA makes it a promising biocatalyst in the preparation of L-PLA.
L-Lactate Dehydrogenase
;
genetics
;
Lactobacillus casei
;
enzymology
;
genetics
;
Phenylpyruvic Acids
;
metabolism
;
Pichia
;
genetics
;
Recombinant Proteins
;
genetics
;
metabolism
5.Heijiangdan ointment relieves oxidative stress from radiation dermatitis induced by (60)Co γ-ray in mice.
Lin YANG ; Ming-wei YU ; Xiao-min WANG ; Yi ZHANG ; Guo-wang YANG ; Xiao-qin LUO ; Rui-yun PENG ; Ya-bing GAO ; Li ZHAO ; Li-feng WANG
Chinese journal of integrative medicine 2016;22(2):110-115
OBJECTIVETo investigate the effects of Heijiangdan Ointment ( HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice.
METHODSFemale Wistar mice with grade 4 radiation dermatitis induced by (60)Co γ-rays were randomly divided into four groups (n=12 per group); the HJD-treated, recombinant human epidermal growth factor (rhEGF)-treated, Trolox-treated, and untreated groups, along with a negative control group. On the 11th and 21st days after treatment, 6 mice in each group were chosen for evaluation. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), and lactate dehydrogenase (LDH) were detected using spectrophotometric methods. The fibroblast mitochondria were observed by transmission electron microscopy (TEM). The expressions of fibroblast growth factor 2 (FGF-2) and transforming growth factor β1 (TGF-β1) were analyzed by western blot.
RESULTSCompared with the untreated group, the levels of SOD, MDA and LDH, on the 11th and 21st days after treatment showed significant difference (P<0.05). TEM analysis indicated that fibroblast mitochondria in the untreated group exhibited swelling and the cristae appeared fractured, while in the HJD group, the swelling of mitochondria was limited and the rough endoplasmic reticulum appeared more relaxed. The expressions of FGF-2 and TGF-β1 increased in the untreated group compared with the negative control group (P<0.05). After treatment, the expression of FGF-2, rhEGF and Trolox in the HJD group were significantly increased compared with the untreated group (P<0.05), or compared with the negative control group (P<0.05). The expression of TGF-β1 showed significant difference between untreated and negative control groups (P<0.05). HJD and Trolox increased the level of TGF-β1 and the difference was marked as compared with the untreated and negative control groups (P<0.05).
CONCLUSIONHJD relieves oxidative stress-induced injury, increases the antioxidant activity, mitigates the fibroblast mitochondrial damage, up-regulates the expression of growth factor, and promotes mitochondrial repair in mice.
Animals ; Biological Products ; pharmacology ; therapeutic use ; Cell Proliferation ; drug effects ; radiation effects ; Cobalt Radioisotopes ; Dermatitis ; complications ; drug therapy ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Female ; Fibroblast Growth Factor 2 ; genetics ; metabolism ; Fibroblasts ; drug effects ; pathology ; radiation effects ; Gamma Rays ; Humans ; L-Lactate Dehydrogenase ; metabolism ; Malondialdehyde ; metabolism ; Mice ; Mitochondria ; drug effects ; metabolism ; radiation effects ; Ointments ; Oxidative Stress ; drug effects ; radiation effects ; Pharmaceutical Preparations ; Radiation Injuries ; complications ; drug therapy ; pathology ; Superoxide Dismutase ; metabolism ; Transforming Growth Factor beta1 ; genetics ; metabolism ; Up-Regulation ; drug effects ; radiation effects
6.Expression of lactate dehydrogenase-5 in non-Hodgkin lymphoma and its clinical significance.
Fei DONG ; Aixia SUI ; Hongmei JING
Journal of Central South University(Medical Sciences) 2016;41(12):1312-1316
To determine expression of lactate dehydrogenase (LDH)-5 in non-Hodgkin lymphoma and its clinical significance.
Methods: LDH-5 levels and LDH levels in NHL patients were examined by agarose gel electrophoresis and enzymatic method (n=63), respectively. Positive rates of LDH-5 and LDH were statistically analyzed.
Results: The median age of NHL patients was 56(19-84) years old, including 36 males and 27 females. The positive numbers for LDH-5 and LDH in the initial treatment group (n=43) were significantly different (P<0.05). There was significant difference in 22 cases of diffuse large B cell lymphoma and in 9 cases of T cell lymphoma, whereas there was not significant difference in 12 cases of small B cell lymphoma (P>0.05). In 15 cases under the status of progress, the difference of LDH-5 and LDH expressions were not significant (P>0.05), whereas the difference in cases of small B cell lymphoma was significant (P<0.05).
Conclusion: LDH-5 can be used as an index for NHL to judge the tumor load and to predict the recurrence.
Adult
;
Aged
;
Aged, 80 and over
;
Biomarkers, Tumor
;
blood
;
metabolism
;
Female
;
Humans
;
Isoenzymes
;
metabolism
;
L-Lactate Dehydrogenase
;
metabolism
;
Lactate Dehydrogenase 5
;
Lymphoma, B-Cell
;
genetics
;
Lymphoma, Large B-Cell, Diffuse
;
genetics
;
Lymphoma, Non-Hodgkin
;
genetics
;
Lymphoma, T-Cell
;
genetics
;
Male
;
Middle Aged
;
Neoplasm Recurrence, Local
;
genetics
;
Prognosis
;
Tumor Burden
7.Preliminary study on hepatotoxicity induced by dioscin and its possible mechanism.
Ya-xin ZHANG ; Yu-guang WANG ; Zeng-chun MA ; Xiang-lin TANG ; Qian-de LIANG ; Hong-ling TAN ; Cheng-rong XIAO ; Yong-hong ZHAO ; Yue GAO
China Journal of Chinese Materia Medica 2015;40(14):2748-2752
Dioscin has a wide range of biological effects and broad application prospects. However the studies concerning the toxicology and mechanism of dioscin is small. This article is to study the hepatotoxicity of dioscin and the effect of dioscin treatment on expression of aryl hydrocarbon receptor (AhR) mRNA and CYP1A mRNA and protein in HepG2 cells in vitro. Dioscin 0.5-32 µmol · L(-1) exposed to HepG2 cells for 12 h, cell viability was examined by CCK-8 assay and the release rate of lactate dehydrogenase (LDH) was to evaluate cell membrane damage. HepG2 cells morphologic changes were quantified by inverted Microscope, and the effect on production of reactive oxygen species (ROS) was detected by flow cytometry. The mRNA expression of CYP1A and AhR was evaluated by RT-RCR. The protein expression of CYP1A1 was detected by western blot. The cell viability was significantly inhibited after HepG2 cells were exposed to dioscin 0.5-32 µmol · L(-1). Compared with the control, the LDH release rate and ROS were significantly increased. The expression of CYPlA and AhR mRNA was increased. The expression of CYP1Al protein was increased after dioscin treatment, and resveratrol, an AhR antagonist, could downregulate the expression of CYP1A1. It follows that large doses dioscin has potential hepatotoxicity. The possible mechanism may be dioscin can active aryl hydrocarbon receptor (AhR) and induce the expression of CYP1A.
Cell Survival
;
drug effects
;
Chemical and Drug Induced Liver Injury
;
etiology
;
Cytochrome P-450 CYP1A1
;
genetics
;
Diosgenin
;
analogs & derivatives
;
toxicity
;
Hep G2 Cells
;
Humans
;
L-Lactate Dehydrogenase
;
secretion
;
RNA, Messenger
;
analysis
;
Reactive Oxygen Species
;
metabolism
;
Receptors, Aryl Hydrocarbon
;
genetics
8.The expression of the sperm-specific lactate dehydrogenase gene Ldh-c in plateau pika (Ochotona curzoniae) cardiac muscle and its effect on the anaerobic glycolysis.
Xiao LI ; Lian WEI ; Yang WANG ; Li-Na XU ; Lin-Na WEI ; Deng-Bang WEI
Acta Physiologica Sinica 2015;67(3):312-318
The plateau pika (Ochotona curzoniae) has a strong adaptability to hypoxic plateau environment. We found that the sperm-specific lactate dehydrogenase (LDH-C4) gene Ldh-c expressed in plateau pika cardiac muscle. In order to shed light on the effect of LDH-C4 on the anaerobic glycolysis in plateau pika cardiac muscle, 20 pikas were randomly divided into the inhibitor group and the control group, and the sample size of each group was 10. The pikas of inhibitor group were injected with 1 mL 1 mol/L N-isopropyl oxamate, a specific LDH-C4 inhibitor, in biceps femoris muscle of hind legs, each leg with 500 μL. The pikas of control group were injected with the same volume of normal saline (0.9% NaCl). The mRNA and protein expression levels of Ldh-c gene in plateau pika cardiac muscle were determined by real-time PCR and Western blot. The activities of LDH, and the contents of lactate (LD) and ATP in cardiac muscle were compared between the inhibitor group and the control group. The results showed that 1) the expression levels of Ldh-c mRNA and protein were 0.47 ± 0.06 and 0.68 ± 0.08, respectively; 2) 30 min after injection of 1 mL 1 mol/L N-isopropyl oxamate in biceps femoris muscle, the concentration of N-isopropyl oxamate in blood was 0.08 mmol/L; 3) in cardiac muscle of the inhibitor group and the control group, the LDH activities were (6.18 ± 0.48) U/mg and (9.08 ± 0.58) U/mg, the contents of LD were (0.21 ± 0.03) mmol/g and (0.26 ± 0.04) mmol/g, and the contents of ATP were (4.40 ± 0.69) nmol/mg and (6.18 ± 0.73) nmol/mg (P < 0.01); 5) the inhibition rates of N-isopropyl oxamate to LDH, LD and ATP were 31.98%, 20.90% and 28.70%, respectively. The results suggest that Ldh-c expresses in cardiac muscle of plateau pika, and the pika cardiac muscle may get at least 28% ATP for its activities by LDH-C4 catalyzed anaerobic glycolysis, which reduces the dependence on oxygen and enhances the adaptation to the hypoxic environments.
Acclimatization
;
Animals
;
Glycolysis
;
Hypoxia
;
Isoenzymes
;
genetics
;
metabolism
;
L-Lactate Dehydrogenase
;
genetics
;
metabolism
;
Lactic Acid
;
analysis
;
Lagomorpha
;
genetics
;
Male
;
Myocardium
;
enzymology
;
Oxamic Acid
;
analogs & derivatives
;
Oxygen
;
RNA, Messenger
9.Protective effect of heart-fatty acid binding protein on lipopolysaccharide-induced cardiomyocyte damage.
Yi LI ; Kangkai WANG ; Yongfang JIANG ; Jun CHEN
Journal of Central South University(Medical Sciences) 2015;40(5):457-463
OBJECTIVE:
To observe the protective effect of heart-fatty acid binding protein (H-FABP) on lipopolysaccharide (LPS)-induced cardiomyocyte damage.
METHODS:
The cardiomyocytes were isolated and cultured from 1-3 days old neonatal rats. The specific siRNA or plasmid of H-FABP were transfected into cells to alter H-FABP expression, which was evaluated by Western blot and quantitative-PCR. LPS-induced cardiomyocyte damage and inflammation were estimated by detecting the contents of lactate dehydrogenase(LDH), TNF-α, and IL-1β as well as cell viability.
RESULTS:
LPS treatment induced inflammation and cell damage indicated by a decrease in cell viability and an increase in LDH, TNF-α and IL-1β in the medium. When H-FABP was downregulated by siRNA transfection, the LPS-induced inflammation and cell damage were augmented. In contrast, when H-FABP was overexpressed by pcDNA3.1-H-FABP transfection, the LPS-induced inflammation and cell damage were suppressed.
CONCLUSION
H-FABP protects cardiomyocytes from LPS-induced inflammation and cell injury.
Animals
;
Animals, Newborn
;
Cell Line
;
Cell Survival
;
Down-Regulation
;
Fatty Acid Binding Protein 3
;
Fatty Acid-Binding Proteins
;
metabolism
;
Inflammation
;
metabolism
;
Interleukin-1beta
;
metabolism
;
L-Lactate Dehydrogenase
;
metabolism
;
Lipopolysaccharides
;
adverse effects
;
Myocytes, Cardiac
;
cytology
;
drug effects
;
RNA, Small Interfering
;
genetics
;
Rats
;
Transfection
;
Tumor Necrosis Factor-alpha
;
metabolism
10.Metabolic shift of Corynebacterium acetoacidophilum-deltaldh under oxygen deprivation conditions.
Qian YANG ; Pu ZHENG ; Fang YU ; Wei LIU ; Zhihao SUN
Chinese Journal of Biotechnology 2014;30(3):435-444
Lactate and succinate were produced by Corynebacterium acetoacidophilum from glucose under oxygen deprivation conditions. To construct knockout mutant, lactate dehydrogenase gene (ldh) of C. acetoacidophilum was deleted by double-crossover chromosome replacement with sacB gene. Comparing with the wild strain ATCC13870, ldhA-deficent mutant produced no lactate with glucose consumption rate decreased by 29.3%, while succinate and acetate concentrations were increased by 45.6% and 182%, respectively. Moreover, the NADH/NAD+ rate was less than 1 (about 0.7), and the activities of phosphoenolpyruvate carboxylase and acetate kinase of the ldhA-deficent mutant were enhanced by 84% and 12 times, respectively. Our studies show that succinicate and acetate production pathways are strengthened by blocking lactate synthesis. It also suggests that improving NADH supply and eliminating acetate generation are alternative strategies to get high succinate-producer.
Corynebacterium glutamicum
;
genetics
;
metabolism
;
Glucose
;
Industrial Microbiology
;
L-Lactate Dehydrogenase
;
genetics
;
metabolism
;
Lactic Acid
;
metabolism
;
Oxygen
;
metabolism
;
Phosphoenolpyruvate Carboxylase
;
Succinic Acid
;
metabolism

Result Analysis
Print
Save
E-mail