1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
2.Risk of Osteoporotic Fractures among Patients with Thyroid Cancer: A Nationwide Population-Based Cohort Study
Eu Jeong KU ; Won Sang YOO ; Yu Been HWANG ; Subin JANG ; Jooyoung LEE ; Shinje MOON ; Eun Kyung LEE ; Hwa Young AHN
Endocrinology and Metabolism 2025;40(2):225-235
Background:
The associations between thyroid cancer and skeletal outcomes have not been thoroughly investigated. We aimed to investigate the risk of osteoporotic fractures in patients with thyroid cancer compared to that in a matched control group.
Methods:
This retrospective cohort study included 2,514 patients with thyroid cancer and 75,420 matched controls from the Korean National Health Insurance Service-National Sample Cohort (NHIS-NSC, 2006–2019). The rates of osteoporotic fractures were analyzed, and associations with the levothyroxine dose were evaluated.
Results:
Patients with thyroid cancer had a significantly lower risk of fracture than did the control group (hazard ratio [HR], 0.81; 95% confidence interval [CI], 0.69 to 0.94; P=0.006). Patients diagnosed with thyroid cancer after the age of 50 years (older cancer group) had a significantly lower risk of fracture than did those in the control group (HR, 0.72; 95% CI, 0.6 to 0.85; P<0.001), especially those diagnosed with spinal fractures (HR, 0.66; 95% CI, 0.51 to 0.85; P=0.001). Patients in the older cancer group started osteoporosis treatment earlier than did those in the control group (65.5±7.5 years vs. 67.3±7.6 years, P<0.001). Additionally, a lower dose of levothyroxine was associated with a reduced risk of fractures.
Conclusion
In the clinical setting, the risk of fracture in women diagnosed with thyroid cancer after the age of 50 years was lower than that in the control group, which was caused by more proactive osteoporosis treatment in postmenopausal women with thyroid cancer.
3.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
4.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
5.Risk of Osteoporotic Fractures among Patients with Thyroid Cancer: A Nationwide Population-Based Cohort Study
Eu Jeong KU ; Won Sang YOO ; Yu Been HWANG ; Subin JANG ; Jooyoung LEE ; Shinje MOON ; Eun Kyung LEE ; Hwa Young AHN
Endocrinology and Metabolism 2025;40(2):225-235
Background:
The associations between thyroid cancer and skeletal outcomes have not been thoroughly investigated. We aimed to investigate the risk of osteoporotic fractures in patients with thyroid cancer compared to that in a matched control group.
Methods:
This retrospective cohort study included 2,514 patients with thyroid cancer and 75,420 matched controls from the Korean National Health Insurance Service-National Sample Cohort (NHIS-NSC, 2006–2019). The rates of osteoporotic fractures were analyzed, and associations with the levothyroxine dose were evaluated.
Results:
Patients with thyroid cancer had a significantly lower risk of fracture than did the control group (hazard ratio [HR], 0.81; 95% confidence interval [CI], 0.69 to 0.94; P=0.006). Patients diagnosed with thyroid cancer after the age of 50 years (older cancer group) had a significantly lower risk of fracture than did those in the control group (HR, 0.72; 95% CI, 0.6 to 0.85; P<0.001), especially those diagnosed with spinal fractures (HR, 0.66; 95% CI, 0.51 to 0.85; P=0.001). Patients in the older cancer group started osteoporosis treatment earlier than did those in the control group (65.5±7.5 years vs. 67.3±7.6 years, P<0.001). Additionally, a lower dose of levothyroxine was associated with a reduced risk of fractures.
Conclusion
In the clinical setting, the risk of fracture in women diagnosed with thyroid cancer after the age of 50 years was lower than that in the control group, which was caused by more proactive osteoporosis treatment in postmenopausal women with thyroid cancer.
6.Risk of Osteoporotic Fractures among Patients with Thyroid Cancer: A Nationwide Population-Based Cohort Study
Eu Jeong KU ; Won Sang YOO ; Yu Been HWANG ; Subin JANG ; Jooyoung LEE ; Shinje MOON ; Eun Kyung LEE ; Hwa Young AHN
Endocrinology and Metabolism 2025;40(2):225-235
Background:
The associations between thyroid cancer and skeletal outcomes have not been thoroughly investigated. We aimed to investigate the risk of osteoporotic fractures in patients with thyroid cancer compared to that in a matched control group.
Methods:
This retrospective cohort study included 2,514 patients with thyroid cancer and 75,420 matched controls from the Korean National Health Insurance Service-National Sample Cohort (NHIS-NSC, 2006–2019). The rates of osteoporotic fractures were analyzed, and associations with the levothyroxine dose were evaluated.
Results:
Patients with thyroid cancer had a significantly lower risk of fracture than did the control group (hazard ratio [HR], 0.81; 95% confidence interval [CI], 0.69 to 0.94; P=0.006). Patients diagnosed with thyroid cancer after the age of 50 years (older cancer group) had a significantly lower risk of fracture than did those in the control group (HR, 0.72; 95% CI, 0.6 to 0.85; P<0.001), especially those diagnosed with spinal fractures (HR, 0.66; 95% CI, 0.51 to 0.85; P=0.001). Patients in the older cancer group started osteoporosis treatment earlier than did those in the control group (65.5±7.5 years vs. 67.3±7.6 years, P<0.001). Additionally, a lower dose of levothyroxine was associated with a reduced risk of fractures.
Conclusion
In the clinical setting, the risk of fracture in women diagnosed with thyroid cancer after the age of 50 years was lower than that in the control group, which was caused by more proactive osteoporosis treatment in postmenopausal women with thyroid cancer.
7.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
8.Risk of Osteoporotic Fractures among Patients with Thyroid Cancer: A Nationwide Population-Based Cohort Study
Eu Jeong KU ; Won Sang YOO ; Yu Been HWANG ; Subin JANG ; Jooyoung LEE ; Shinje MOON ; Eun Kyung LEE ; Hwa Young AHN
Endocrinology and Metabolism 2025;40(2):225-235
Background:
The associations between thyroid cancer and skeletal outcomes have not been thoroughly investigated. We aimed to investigate the risk of osteoporotic fractures in patients with thyroid cancer compared to that in a matched control group.
Methods:
This retrospective cohort study included 2,514 patients with thyroid cancer and 75,420 matched controls from the Korean National Health Insurance Service-National Sample Cohort (NHIS-NSC, 2006–2019). The rates of osteoporotic fractures were analyzed, and associations with the levothyroxine dose were evaluated.
Results:
Patients with thyroid cancer had a significantly lower risk of fracture than did the control group (hazard ratio [HR], 0.81; 95% confidence interval [CI], 0.69 to 0.94; P=0.006). Patients diagnosed with thyroid cancer after the age of 50 years (older cancer group) had a significantly lower risk of fracture than did those in the control group (HR, 0.72; 95% CI, 0.6 to 0.85; P<0.001), especially those diagnosed with spinal fractures (HR, 0.66; 95% CI, 0.51 to 0.85; P=0.001). Patients in the older cancer group started osteoporosis treatment earlier than did those in the control group (65.5±7.5 years vs. 67.3±7.6 years, P<0.001). Additionally, a lower dose of levothyroxine was associated with a reduced risk of fractures.
Conclusion
In the clinical setting, the risk of fracture in women diagnosed with thyroid cancer after the age of 50 years was lower than that in the control group, which was caused by more proactive osteoporosis treatment in postmenopausal women with thyroid cancer.
9.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
10.Current Status of Flow Cytometric Immunophenotyping of Hematolymphoid Neoplasms in Korea
Mikyoung PARK ; Jihyang LIM ; Ari AHN ; Eun-Jee OH ; Jaewoo SONG ; Kyeong-Hee KIM ; Jin-Yeong HAN ; Hyun-Woo CHOI ; Joo-Heon PARK ; Kyung-Hwa SHIN ; Hyerim KIM ; Miyoung KIM ; Sang-Hyun HWANG ; Hyun-Young KIM ; Duck CHO ; Eun-Suk KANG
Annals of Laboratory Medicine 2024;44(3):222-234
Background:
Flow cytometric immunophenotyping of hematolymphoid neoplasms (FCIHLN) is essential for diagnosis, classification, and minimal residual disease (MRD) monitoring. FCI-HLN is typically performed using in-house protocols, raising the need for standardization. Therefore, we surveyed the current status of FCI-HLN in Korea to obtain fundamental data for quality improvement and standardization.
Methods:
Eight university hospitals actively conducting FCI-HLN participated in our survey.We analyzed responses to a questionnaire that included inquiries regarding test items, reagent antibodies (RAs), fluorophores, sample amounts (SAs), reagent antibody amounts (RAAs), acquisition cell number (ACN), isotype control (IC) usage, positiveegative criteria, and reporting.
Results:
Most hospitals used acute HLN, chronic HLN, plasma cell neoplasm (PCN), and MRD panels. The numbers of RAs were heterogeneous, with a maximum of 32, 26, 12, 14, and 10 antibodies used for acute HLN, chronic HLN, PCN, ALL-MRD, and multiple myeloma-MRD, respectively. The number of fluorophores ranged from 4 to 10. RAs, SAs, RAAs, and ACN were diverse. Most hospitals used a positive criterion of 20%, whereas one used 10% for acute and chronic HLN panels. Five hospitals used ICs for the negative criterion. Positiveegative assignments, percentages, and general opinions were commonly reported. In MRD reporting, the limit of detection and lower limit of quantification were included.
Conclusions
This is the first comprehensive study on the current status of FCI-HLN in Korea, confirming the high heterogeneity and complexity of FCI-HLN practices. Standardization of FCI-HLN is urgently needed. The findings provide a reference for establishing standard FCI-HLN guidelines.

Result Analysis
Print
Save
E-mail