1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
2.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
3.Ratio of Skeletal Muscle Mass to Visceral Fat Area Is a Useful Marker for Assessing Left Ventricular Diastolic Dysfunction among Koreans with Preserved Ejection Fraction: An Analysis of the Random Forest Model
Jin Kyung OH ; Yuri SEO ; Wonmook HWANG ; Sami LEE ; Yong-Hoon YOON ; Kyupil KIM ; Hyun Woong PARK ; Jae-Hyung ROH ; Jae-Hwan LEE ; Minsu KIM
Journal of Obesity & Metabolic Syndrome 2025;34(1):54-64
Background:
Although the presence of both obesity and reduced muscle mass presents a dual metabolic burden and additively has a negative effect on a variety of cardiometabolic parameters, data regarding the associations between their combined effects and left ventricular diastolic function are limited. This study investigated the association between the ratio of skeletal muscle mass to visceral fat area (SVR) and left ventricular diastolic dysfunction (LVDD) in patients with preserved ejection fraction using random forest machine learning.
Methods:
In total, 1,070 participants with preserved left ventricular ejection fraction who underwent comprehensive health examinations, including transthoracic echocardiography and bioimpedance body composition analysis, were enrolled. SVR was calculated as an index of sarcopenic obesity by dividing the appendicular skeletal muscle mass by the visceral fat area.
Results:
In the random forest model, age and SVR were the most powerful predictors of LVDD. Multivariate logistic regression analysis demonstrated that older age (adjusted odds ratio [OR], 1.11; 95% confidence interval [CI], 1.07 to 1.15) and lower SVR (adjusted OR, 0.08; 95% CI, 0.01 to 0.57) were independent risk factors for LVDD.SVR showed a significant improvement in predictive performance and fair predictability for LVDD, with the highest area under the curve noted in both men and women, with statistical significance. In non-obese and metabolically healthy individuals, the lowest SVR tertile was associated with a greater risk of LVDD compared to the highest SVR tertile.
Conclusion
Decreased muscle mass and increased visceral fat were significantly associated with LVDD compared to obesity, body fat composition, and body muscle composition indices.
4.Comparison of tissue-based and plasma-based testing for EGFR mutation in non–small cell lung cancer patients
Yoon Kyung KANG ; Dong Hoon SHIN ; Joon Young PARK ; Chung Su HWANG ; Hyun Jung LEE ; Jung Hee LEE ; Jee Yeon KIM ; JooYoung NA
Journal of Pathology and Translational Medicine 2025;59(1):60-67
Background:
Epidermal growth factor receptor (EGFR) gene mutation testing is crucial for the administration of tyrosine kinase inhibitors to treat non–small cell lung cancer. In addition to traditional tissue-based tests, liquid biopsies using plasma are increasingly utilized, particularly for detecting T790M mutations. This study compared tissue- and plasma-based EGFR testing methods.
Methods:
A total of 248 patients were tested for EGFR mutations using tissue and plasma samples from 2018 to 2023 at Pusan National University Yangsan Hospital. Tissue tests were performed using PANAmutyper, and plasma tests were performed using the Cobas EGFR Mutation Test v2.
Results:
All 248 patients underwent tissue-based EGFR testing, and 245 (98.8%) showed positive results. Of the 408 plasma tests, 237 (58.1%) were positive. For the T790M mutation, tissue biopsies were performed 87 times in 69 patients, and 30 positive cases (38.6%) were detected. Plasma testing for the T790M mutation was conducted 333 times in 207 patients, yielding 62 positive results (18.6%). Of these, 57 (27.5%) were confirmed to have the mutation via plasma testing. Combined tissue and plasma tests for the T790M mutation were positive in nine patients (13.4%), while 17 (25.4%) were positive in tissue only and 12 (17.9%) in plasma only. This mutation was not detected in 28 patients (43.3%).
Conclusions
Although the tissue- and plasma-based tests showed a sensitivity of 37.3% and 32.8%, respectively, combined testing increased the detection rate to 56.7%. Thus, neither test demonstrated superiority, rather, they were complementary.
5.Complete or incomplete revascularization in patients with left main culprit lesion acute myocardial infarction with multivessel disease: a retrospective observational study
Sun Oh KIM ; Hong-Ju KIM ; Jong-Il PARK ; Kang-Un CHOI ; Jong-Ho NAM ; Chan-Hee LEE ; Jang-Won SON ; Jong-Seon PARK ; Sung-Ho HER ; Ki-Yuk CHANG ; Tae-Hoon AHN ; Myung-Ho JEONG ; Seung-Woon RHA ; Hyo-Soo KIM ; Hyeon-Cheol GWON ; In-Whan SEONG ; Kyung-Kuk HWANG ; Seung-Ho HUR ; Kwang-Soo CHA ; Seok-Kyu OH ; Jei-Keon CHAE ; Ung KIM
Journal of Yeungnam Medical Science 2025;42(1):18-
Background:
Complete revascularization has demonstrated better outcomes in patients with acute myocardial infarction (AMI) and multivessel disease. However, in the case of left main (LM) culprit lesion AMI with multivessel disease, there is limited evidence to suggest that complete revascularization is better.
Methods:
We reviewed 16,831 patients in the Korea Acute Myocardial Infarction Registry who were treated from July 2016 to June 2020, and 399 patients were enrolled with LM culprit lesion AMI treated with percutaneous coronary intervention. We categorized the patients as those treated with complete revascularization (n=295) or incomplete revascularization (n=104). The study endpoint was major adverse cardiac and cerebrovascular events (MACCE), a composite of all-cause death, myocardial infarction, ischemia-driven revascularization, stent thrombosis, and stroke. We performed propensity score matching (PSM) and analyzed the incidence of MACCE at 1 year.
Results:
After PSM, the two groups were well balanced. There was no significant difference between the two groups in MACCE at 1 year (12.1% vs. 15.2%; hazard ratio, 1.28; 95% confidence interval, 0.60–2.74; p=0.524) after PSM. The components of MACCE and major bleeding were also not significantly different.
Conclusion
There was no significant difference in clinical outcomes between the groups treated with complete or incomplete revascularization for LM culprit lesion AMI with multivessel disease.
6.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
7.Complete or incomplete revascularization in patients with left main culprit lesion acute myocardial infarction with multivessel disease: a retrospective observational study
Sun Oh KIM ; Hong-Ju KIM ; Jong-Il PARK ; Kang-Un CHOI ; Jong-Ho NAM ; Chan-Hee LEE ; Jang-Won SON ; Jong-Seon PARK ; Sung-Ho HER ; Ki-Yuk CHANG ; Tae-Hoon AHN ; Myung-Ho JEONG ; Seung-Woon RHA ; Hyo-Soo KIM ; Hyeon-Cheol GWON ; In-Whan SEONG ; Kyung-Kuk HWANG ; Seung-Ho HUR ; Kwang-Soo CHA ; Seok-Kyu OH ; Jei-Keon CHAE ; Ung KIM
Journal of Yeungnam Medical Science 2025;42(1):18-
Background:
Complete revascularization has demonstrated better outcomes in patients with acute myocardial infarction (AMI) and multivessel disease. However, in the case of left main (LM) culprit lesion AMI with multivessel disease, there is limited evidence to suggest that complete revascularization is better.
Methods:
We reviewed 16,831 patients in the Korea Acute Myocardial Infarction Registry who were treated from July 2016 to June 2020, and 399 patients were enrolled with LM culprit lesion AMI treated with percutaneous coronary intervention. We categorized the patients as those treated with complete revascularization (n=295) or incomplete revascularization (n=104). The study endpoint was major adverse cardiac and cerebrovascular events (MACCE), a composite of all-cause death, myocardial infarction, ischemia-driven revascularization, stent thrombosis, and stroke. We performed propensity score matching (PSM) and analyzed the incidence of MACCE at 1 year.
Results:
After PSM, the two groups were well balanced. There was no significant difference between the two groups in MACCE at 1 year (12.1% vs. 15.2%; hazard ratio, 1.28; 95% confidence interval, 0.60–2.74; p=0.524) after PSM. The components of MACCE and major bleeding were also not significantly different.
Conclusion
There was no significant difference in clinical outcomes between the groups treated with complete or incomplete revascularization for LM culprit lesion AMI with multivessel disease.
8.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200
9.Erratum: Korean Gastric Cancer Association-Led Nationwide Survey on Surgically Treated Gastric Cancers in 2023
Dong Jin KIM ; Jeong Ho SONG ; Ji-Hyeon PARK ; Sojung KIM ; Sin Hye PARK ; Cheol Min SHIN ; Yoonjin KWAK ; Kyunghye BANG ; Chung-sik GONG ; Sung Eun OH ; Yoo Min KIM ; Young Suk PARK ; Jeesun KIM ; Ji Eun JUNG ; Mi Ran JUNG ; Bang Wool EOM ; Ki Bum PARK ; Jae Hun CHUNG ; Sang-Il LEE ; Young-Gil SON ; Dae Hoon KIM ; Sang Hyuk SEO ; Sejin LEE ; Won Jun SEO ; Dong Jin PARK ; Yoonhong KIM ; Jin-Jo KIM ; Ki Bum PARK ; In CHO ; Hye Seong AHN ; Sung Jin OH ; Ju-Hee LEE ; Hayemin LEE ; Seong Chan GONG ; Changin CHOI ; Ji-Ho PARK ; Eun Young KIM ; Chang Min LEE ; Jong Hyuk YUN ; Seung Jong OH ; Eunju LEE ; Seong-A JEONG ; Jung-Min BAE ; Jae-Seok MIN ; Hyun-dong CHAE ; Sung Gon KIM ; Daegeun PARK ; Dong Baek KANG ; Hogoon KIM ; Seung Soo LEE ; Sung Il CHOI ; Seong Ho HWANG ; Su-Mi KIM ; Moon Soo LEE ; Sang Hyun KIM ; Sang-Ho JEONG ; Yusung YANG ; Yonghae BAIK ; Sang Soo EOM ; Inho JEONG ; Yoon Ju JUNG ; Jong-Min PARK ; Jin Won LEE ; Jungjai PARK ; Ki Han KIM ; Kyung-Goo LEE ; Jeongyeon LEE ; Seongil OH ; Ji Hun PARK ; Jong Won KIM ;
Journal of Gastric Cancer 2025;25(2):400-402
10.Prospective Multicenter Observational Study on Postoperative Quality of Life According to Type of Gastrectomy for Gastric Cancer
Sung Eun OH ; Yun-Suhk SUH ; Ji Yeong AN ; Keun Won RYU ; In CHO ; Sung Geun KIM ; Ji-Ho PARK ; Hoon HUR ; Hyung-Ho KIM ; Sang-Hoon AHN ; Sun-Hwi HWANG ; Hong Man YOON ; Ki Bum PARK ; Hyoung-Il KIM ; In Gyu KWON ; Han-Kwang YANG ; Byoung-Jo SUH ; Sang-Ho JEONG ; Tae-Han KIM ; Oh Kyoung KWON ; Hye Seong AHN ; Ji Yeon PARK ; Ki Young YOON ; Myoung Won SON ; Seong-Ho KONG ; Young-Gil SON ; Geum Jong SONG ; Jong Hyuk YUN ; Jung-Min BAE ; Do Joong PARK ; Sol LEE ; Jun-Young YANG ; Kyung Won SEO ; You-Jin JANG ; So Hyun KANG ; Bang Wool EOM ; Joongyub LEE ; Hyuk-Joon LEE ;
Journal of Gastric Cancer 2025;25(2):382-399
Purpose:
This study evaluated the postoperative quality of life (QoL) after various types of gastrectomy for gastric cancer.
Materials and Methods:
A multicenter prospective observational study was conducted in Korea using the Korean Quality of Life in Stomach Cancer Patients Study (KOQUSS)-40, a new QoL assessment tool focusing on postgastrectomy syndrome. Overall, 496 patients with gastric cancer were enrolled, and QoL was assessed at 5 time points: preoperatively and at 1, 3, 6, and 12 months after surgery.
Results:
Distal gastrectomy (DG) and pylorus-preserving gastrectomy (PPG) showed significantly better outcomes than total gastrectomy (TG) and proximal gastrectomy (PG) with regard to total score, indigestion, and dysphagia. DG, PPG, and TG also showed significantly better outcomes than PG in terms of dumping syndrome and worry about cancer. Postoperative QoL did not differ significantly according to anastomosis type in DG, except for Billroth I anastomosis, which achieved better bowel habit change scores than the others. No domains differed significantly when comparing double tract reconstruction and esophagogastrostomy after PG. The total QoL score correlated significantly with postoperative body weight loss (more than 10%) and extent of resection (P<0.05 for both).Reflux as assessed by KOQUSS-40 did not correlate significantly with reflux observed on gastroscopy 1 year postoperatively (P=0.064).
Conclusions
Our prospective observation using KOQUSS-40 revealed that DG and PPG lead to better QoL than TG and PG. Further study is needed to compare postoperative QoL according to anastomosis type in DG and PG.

Result Analysis
Print
Save
E-mail