1.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
2.Diagnosis of Pneumocystis jirovecii Pneumonia in Non-HIV Immunocompromised Patient in Korea: A Review and Algorithm Proposed by Expert Consensus Group
Raeseok LEE ; Kyungmin HUH ; Chang Kyung KANG ; Yong Chan KIM ; Jung Ho KIM ; Hyungjin KIM ; Jeong Su PARK ; Ji Young PARK ; Heungsup SUNG ; Jongtak JUNG ; Chung-Jong KIM ; Kyoung-Ho SONG
Infection and Chemotherapy 2025;57(1):45-62
Pneumocystis jirovecii pneumonia (PJP) is a life-threatening infection commonly observed in immunocompromised patients, necessitating prompt diagnosis and treatment. This review evaluates the diagnostic performance of various tests used for PJP diagnosis through a comprehensive literature review. Additionally, we propose a diagnostic algorithm tailored to non-human immunodeficiency virus immunocompromised patients, considering the specific characteristics of current medical resources in Korea.
3.Deep Learning Technology for Classification of Thyroid Nodules Using Multi-View Ultrasound Images: Potential Benefits and Challenges in Clinical Application
Jinyoung KIM ; Min-Hee KIM ; Dong-Jun LIM ; Hankyeol LEE ; Jae Jun LEE ; Hyuk-Sang KWON ; Mee Kyoung KIM ; Ki-Ho SONG ; Tae-Jung KIM ; So Lyung JUNG ; Yong Oh LEE ; Ki-Hyun BAEK
Endocrinology and Metabolism 2025;40(2):216-224
Background:
This study aimed to evaluate the applicability of deep learning technology to thyroid ultrasound images for classification of thyroid nodules.
Methods:
This retrospective analysis included ultrasound images of patients with thyroid nodules investigated by fine-needle aspiration at the thyroid clinic of a single center from April 2010 to September 2012. Thyroid nodules with cytopathologic results of Bethesda category V (suspicious for malignancy) or VI (malignant) were defined as thyroid cancer. Multiple deep learning algorithms based on convolutional neural networks (CNNs) —ResNet, DenseNet, and EfficientNet—were utilized, and Siamese neural networks facilitated multi-view analysis of paired transverse and longitudinal ultrasound images.
Results:
Among 1,048 analyzed thyroid nodules from 943 patients, 306 (29%) were identified as thyroid cancer. In a subgroup analysis of transverse and longitudinal images, longitudinal images showed superior prediction ability. Multi-view modeling, based on paired transverse and longitudinal images, significantly improved the model performance; with an accuracy of 0.82 (95% confidence intervals [CI], 0.80 to 0.86) with ResNet50, 0.83 (95% CI, 0.83 to 0.88) with DenseNet201, and 0.81 (95% CI, 0.79 to 0.84) with EfficientNetv2_ s. Training with high-resolution images obtained using the latest equipment tended to improve model performance in association with increased sensitivity.
Conclusion
CNN algorithms applied to ultrasound images demonstrated substantial accuracy in thyroid nodule classification, indicating their potential as valuable tools for diagnosing thyroid cancer. However, in real-world clinical settings, it is important to aware that model performance may vary depending on the quality of images acquired by different physicians and imaging devices.
4.Lifestyle Changes and Remission in Patients With New-Onset Type 2Diabetes: A Nationwide Cohort Study
Jinyoung KIM ; Bongseong KIM ; Mee Kyoung KIM ; Ki-Hyun BAEK ; Ki-Ho SONG ; Kyungdo HAN ; Hyuk-Sang KWON
Journal of Korean Medical Science 2025;40(7):e24-
Background:
Lifestyle-related factors have been studied as a fundamental aspect in the onset and progression of type 2 diabetes mellitus. However, behavioral factors are easily overlooked in clinical practice. This study investigated whether lifestyle changes were associated with diabetes remission in newly diagnosed type 2 diabetes patients.
Methods:
We enrolled patients with new-onset type 2 diabetes from 2009 to 2012 using a health examination cohort from the Korean National Health Insurance Service (KNHIS).Remission was defined as a fasting glucose level less than 126 mg/dL at least once during a health examination after stopping medication. A self-administered questionnaire was used to investigate patients’ lifestyles. We investigated smoking, alcohol consumption, and regular exercise before and after starting diabetes medication and the odds ratios (ORs) of logistic regression on remission to evaluate the associations.
Results:
A total of 138,211 patients diagnosed with type 2 diabetes from 2009 to 2012 were analyzed, and 8,192 (6.3%) reported remission during the follow-up period to 2017. Baseline fasting blood glucose level measured before starting diabetes medication was significantly higher in the non-remission group (180 mg/dL vs. 159 mg/dL, P < 0.001). In addition, the use rate of combined oral hypoglycemic agent treatment was higher in the non-remission group (15% vs. 8%, P < 0.001). Consistent smoking and drinking showed negative associations with remission (OR, 0.72; 95% confidence interval [CI], 0.67–0.77 and OR, 0.90; 95% CI, 0.84– 0.95, respectively), and initiation of regular exercise presented a positive association with remission (OR, 1.54; 95% CI, 0.46–1.63). Abstinence from alcohol increased the likelihood of remission in the male population (OR, 1.20; 95% CI, 1.10–1.32). The association with smoking history or smoking cessation was not clear, but new smoking behavior interfered with remission in women (OR, 0.48; 95% CI, 0.28–0.81).
Conclusion
We confirmed associations between a healthy lifestyle and diabetic remission in new-onset type 2 diabetes patients. The results of this study suggest that improving lifestyle after diabetes diagnosis may contribute to disease remission.
5.Lifestyle Changes and Remission in Patients With New-Onset Type 2Diabetes: A Nationwide Cohort Study
Jinyoung KIM ; Bongseong KIM ; Mee Kyoung KIM ; Ki-Hyun BAEK ; Ki-Ho SONG ; Kyungdo HAN ; Hyuk-Sang KWON
Journal of Korean Medical Science 2025;40(7):e24-
Background:
Lifestyle-related factors have been studied as a fundamental aspect in the onset and progression of type 2 diabetes mellitus. However, behavioral factors are easily overlooked in clinical practice. This study investigated whether lifestyle changes were associated with diabetes remission in newly diagnosed type 2 diabetes patients.
Methods:
We enrolled patients with new-onset type 2 diabetes from 2009 to 2012 using a health examination cohort from the Korean National Health Insurance Service (KNHIS).Remission was defined as a fasting glucose level less than 126 mg/dL at least once during a health examination after stopping medication. A self-administered questionnaire was used to investigate patients’ lifestyles. We investigated smoking, alcohol consumption, and regular exercise before and after starting diabetes medication and the odds ratios (ORs) of logistic regression on remission to evaluate the associations.
Results:
A total of 138,211 patients diagnosed with type 2 diabetes from 2009 to 2012 were analyzed, and 8,192 (6.3%) reported remission during the follow-up period to 2017. Baseline fasting blood glucose level measured before starting diabetes medication was significantly higher in the non-remission group (180 mg/dL vs. 159 mg/dL, P < 0.001). In addition, the use rate of combined oral hypoglycemic agent treatment was higher in the non-remission group (15% vs. 8%, P < 0.001). Consistent smoking and drinking showed negative associations with remission (OR, 0.72; 95% confidence interval [CI], 0.67–0.77 and OR, 0.90; 95% CI, 0.84– 0.95, respectively), and initiation of regular exercise presented a positive association with remission (OR, 1.54; 95% CI, 0.46–1.63). Abstinence from alcohol increased the likelihood of remission in the male population (OR, 1.20; 95% CI, 1.10–1.32). The association with smoking history or smoking cessation was not clear, but new smoking behavior interfered with remission in women (OR, 0.48; 95% CI, 0.28–0.81).
Conclusion
We confirmed associations between a healthy lifestyle and diabetic remission in new-onset type 2 diabetes patients. The results of this study suggest that improving lifestyle after diabetes diagnosis may contribute to disease remission.
6.Prospective Multicenter Observational Study on Postoperative Quality of Life According to Type of Gastrectomy for Gastric Cancer
Sung Eun OH ; Yun-Suhk SUH ; Ji Yeong AN ; Keun Won RYU ; In CHO ; Sung Geun KIM ; Ji-Ho PARK ; Hoon HUR ; Hyung-Ho KIM ; Sang-Hoon AHN ; Sun-Hwi HWANG ; Hong Man YOON ; Ki Bum PARK ; Hyoung-Il KIM ; In Gyu KWON ; Han-Kwang YANG ; Byoung-Jo SUH ; Sang-Ho JEONG ; Tae-Han KIM ; Oh Kyoung KWON ; Hye Seong AHN ; Ji Yeon PARK ; Ki Young YOON ; Myoung Won SON ; Seong-Ho KONG ; Young-Gil SON ; Geum Jong SONG ; Jong Hyuk YUN ; Jung-Min BAE ; Do Joong PARK ; Sol LEE ; Jun-Young YANG ; Kyung Won SEO ; You-Jin JANG ; So Hyun KANG ; Bang Wool EOM ; Joongyub LEE ; Hyuk-Joon LEE ;
Journal of Gastric Cancer 2025;25(2):382-399
Purpose:
This study evaluated the postoperative quality of life (QoL) after various types of gastrectomy for gastric cancer.
Materials and Methods:
A multicenter prospective observational study was conducted in Korea using the Korean Quality of Life in Stomach Cancer Patients Study (KOQUSS)-40, a new QoL assessment tool focusing on postgastrectomy syndrome. Overall, 496 patients with gastric cancer were enrolled, and QoL was assessed at 5 time points: preoperatively and at 1, 3, 6, and 12 months after surgery.
Results:
Distal gastrectomy (DG) and pylorus-preserving gastrectomy (PPG) showed significantly better outcomes than total gastrectomy (TG) and proximal gastrectomy (PG) with regard to total score, indigestion, and dysphagia. DG, PPG, and TG also showed significantly better outcomes than PG in terms of dumping syndrome and worry about cancer. Postoperative QoL did not differ significantly according to anastomosis type in DG, except for Billroth I anastomosis, which achieved better bowel habit change scores than the others. No domains differed significantly when comparing double tract reconstruction and esophagogastrostomy after PG. The total QoL score correlated significantly with postoperative body weight loss (more than 10%) and extent of resection (P<0.05 for both).Reflux as assessed by KOQUSS-40 did not correlate significantly with reflux observed on gastroscopy 1 year postoperatively (P=0.064).
Conclusions
Our prospective observation using KOQUSS-40 revealed that DG and PPG lead to better QoL than TG and PG. Further study is needed to compare postoperative QoL according to anastomosis type in DG and PG.
7.Deep Learning Technology for Classification of Thyroid Nodules Using Multi-View Ultrasound Images: Potential Benefits and Challenges in Clinical Application
Jinyoung KIM ; Min-Hee KIM ; Dong-Jun LIM ; Hankyeol LEE ; Jae Jun LEE ; Hyuk-Sang KWON ; Mee Kyoung KIM ; Ki-Ho SONG ; Tae-Jung KIM ; So Lyung JUNG ; Yong Oh LEE ; Ki-Hyun BAEK
Endocrinology and Metabolism 2025;40(2):216-224
Background:
This study aimed to evaluate the applicability of deep learning technology to thyroid ultrasound images for classification of thyroid nodules.
Methods:
This retrospective analysis included ultrasound images of patients with thyroid nodules investigated by fine-needle aspiration at the thyroid clinic of a single center from April 2010 to September 2012. Thyroid nodules with cytopathologic results of Bethesda category V (suspicious for malignancy) or VI (malignant) were defined as thyroid cancer. Multiple deep learning algorithms based on convolutional neural networks (CNNs) —ResNet, DenseNet, and EfficientNet—were utilized, and Siamese neural networks facilitated multi-view analysis of paired transverse and longitudinal ultrasound images.
Results:
Among 1,048 analyzed thyroid nodules from 943 patients, 306 (29%) were identified as thyroid cancer. In a subgroup analysis of transverse and longitudinal images, longitudinal images showed superior prediction ability. Multi-view modeling, based on paired transverse and longitudinal images, significantly improved the model performance; with an accuracy of 0.82 (95% confidence intervals [CI], 0.80 to 0.86) with ResNet50, 0.83 (95% CI, 0.83 to 0.88) with DenseNet201, and 0.81 (95% CI, 0.79 to 0.84) with EfficientNetv2_ s. Training with high-resolution images obtained using the latest equipment tended to improve model performance in association with increased sensitivity.
Conclusion
CNN algorithms applied to ultrasound images demonstrated substantial accuracy in thyroid nodule classification, indicating their potential as valuable tools for diagnosing thyroid cancer. However, in real-world clinical settings, it is important to aware that model performance may vary depending on the quality of images acquired by different physicians and imaging devices.
8.Deep Learning Technology for Classification of Thyroid Nodules Using Multi-View Ultrasound Images: Potential Benefits and Challenges in Clinical Application
Jinyoung KIM ; Min-Hee KIM ; Dong-Jun LIM ; Hankyeol LEE ; Jae Jun LEE ; Hyuk-Sang KWON ; Mee Kyoung KIM ; Ki-Ho SONG ; Tae-Jung KIM ; So Lyung JUNG ; Yong Oh LEE ; Ki-Hyun BAEK
Endocrinology and Metabolism 2025;40(2):216-224
Background:
This study aimed to evaluate the applicability of deep learning technology to thyroid ultrasound images for classification of thyroid nodules.
Methods:
This retrospective analysis included ultrasound images of patients with thyroid nodules investigated by fine-needle aspiration at the thyroid clinic of a single center from April 2010 to September 2012. Thyroid nodules with cytopathologic results of Bethesda category V (suspicious for malignancy) or VI (malignant) were defined as thyroid cancer. Multiple deep learning algorithms based on convolutional neural networks (CNNs) —ResNet, DenseNet, and EfficientNet—were utilized, and Siamese neural networks facilitated multi-view analysis of paired transverse and longitudinal ultrasound images.
Results:
Among 1,048 analyzed thyroid nodules from 943 patients, 306 (29%) were identified as thyroid cancer. In a subgroup analysis of transverse and longitudinal images, longitudinal images showed superior prediction ability. Multi-view modeling, based on paired transverse and longitudinal images, significantly improved the model performance; with an accuracy of 0.82 (95% confidence intervals [CI], 0.80 to 0.86) with ResNet50, 0.83 (95% CI, 0.83 to 0.88) with DenseNet201, and 0.81 (95% CI, 0.79 to 0.84) with EfficientNetv2_ s. Training with high-resolution images obtained using the latest equipment tended to improve model performance in association with increased sensitivity.
Conclusion
CNN algorithms applied to ultrasound images demonstrated substantial accuracy in thyroid nodule classification, indicating their potential as valuable tools for diagnosing thyroid cancer. However, in real-world clinical settings, it is important to aware that model performance may vary depending on the quality of images acquired by different physicians and imaging devices.
9.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
10.Diagnosis of Pneumocystis jirovecii Pneumonia in Non-HIV Immunocompromised Patient in Korea: A Review and Algorithm Proposed by Expert Consensus Group
Raeseok LEE ; Kyungmin HUH ; Chang Kyung KANG ; Yong Chan KIM ; Jung Ho KIM ; Hyungjin KIM ; Jeong Su PARK ; Ji Young PARK ; Heungsup SUNG ; Jongtak JUNG ; Chung-Jong KIM ; Kyoung-Ho SONG
Infection and Chemotherapy 2025;57(1):45-62
Pneumocystis jirovecii pneumonia (PJP) is a life-threatening infection commonly observed in immunocompromised patients, necessitating prompt diagnosis and treatment. This review evaluates the diagnostic performance of various tests used for PJP diagnosis through a comprehensive literature review. Additionally, we propose a diagnostic algorithm tailored to non-human immunodeficiency virus immunocompromised patients, considering the specific characteristics of current medical resources in Korea.

Result Analysis
Print
Save
E-mail