1.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
2.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
3.Primed Mesenchymal Stem Cells by IFN-γγ and IL-1β Ameliorate Acute Respiratory Distress Syndrome through Enhancing Homing Effect and Immunomodulation
Taeho KONG ; Su Kyoung SEO ; Yong-Seok HAN ; Woo Min SEO ; Bokyong KIM ; Jieun KIM ; Young-Jae CHO ; Seunghee LEE ; Kyung-Sun KANG
Biomolecules & Therapeutics 2025;33(2):311-324
Acute Respiratory Distress Syndrome (ARDS) is a severe condition characterized by extensive lung inflammation and increased alveolar-capillary permeability, often triggered by infections or systemic inflammatory responses. Mesenchymal stem cells (MSCs)-based therapy holds promise for treating ARDS, as MSCs manifest immunomodulatory and regenerative properties that mitigate inflammation and enhance tissue repair. Primed MSCs, modified to augment specific functionalities, demonstrate superior therapeutic efficacy in targeted therapies compared to naive MSCs. This study explored the immunomodulatory potential of MSCs using mixed lymphocyte reaction (MLR) assays and co-culture experiments with M1/M2 macrophages. Additionally, RNA sequencing was employed to identify alterations in immune and inflammation-related factors in primed MSCs. The therapeutic effects of primed MSCs were assessed in an LPS-induced ARDS mouse model, and the underlying mechanisms were investigated through spatial transcriptomics analysis. The study revealed that MSCs primed with IFN-γ and IL-1β significantly enhanced the suppression of T cell activity compared to naive MSCs, concurrently inhibiting TNF-α while increasing IL-10 production in macrophages. Notably, combined treatment with these two cytokines resulted in a significant upregulation of immune and inflammation-regulating factors. Furthermore, our analyses elucidated the mechanisms behind the therapeutic effects of primed MSCs, including the inhibition of inflammatory cell infiltration in lung tissue, modulation of immune and inflammatory responses, and enhancement of elastin fiber formation. Signaling pathway analysis confirmed that efficacy could be enhanced by modulating NFκB and TNF-α signaling. In conclusion, in early-phase ARDS, primed MSCs displayed enhanced homing capabilities, improved lung function, and reduced inflammation.
4.Primed Mesenchymal Stem Cells by IFN-γγ and IL-1β Ameliorate Acute Respiratory Distress Syndrome through Enhancing Homing Effect and Immunomodulation
Taeho KONG ; Su Kyoung SEO ; Yong-Seok HAN ; Woo Min SEO ; Bokyong KIM ; Jieun KIM ; Young-Jae CHO ; Seunghee LEE ; Kyung-Sun KANG
Biomolecules & Therapeutics 2025;33(2):311-324
Acute Respiratory Distress Syndrome (ARDS) is a severe condition characterized by extensive lung inflammation and increased alveolar-capillary permeability, often triggered by infections or systemic inflammatory responses. Mesenchymal stem cells (MSCs)-based therapy holds promise for treating ARDS, as MSCs manifest immunomodulatory and regenerative properties that mitigate inflammation and enhance tissue repair. Primed MSCs, modified to augment specific functionalities, demonstrate superior therapeutic efficacy in targeted therapies compared to naive MSCs. This study explored the immunomodulatory potential of MSCs using mixed lymphocyte reaction (MLR) assays and co-culture experiments with M1/M2 macrophages. Additionally, RNA sequencing was employed to identify alterations in immune and inflammation-related factors in primed MSCs. The therapeutic effects of primed MSCs were assessed in an LPS-induced ARDS mouse model, and the underlying mechanisms were investigated through spatial transcriptomics analysis. The study revealed that MSCs primed with IFN-γ and IL-1β significantly enhanced the suppression of T cell activity compared to naive MSCs, concurrently inhibiting TNF-α while increasing IL-10 production in macrophages. Notably, combined treatment with these two cytokines resulted in a significant upregulation of immune and inflammation-regulating factors. Furthermore, our analyses elucidated the mechanisms behind the therapeutic effects of primed MSCs, including the inhibition of inflammatory cell infiltration in lung tissue, modulation of immune and inflammatory responses, and enhancement of elastin fiber formation. Signaling pathway analysis confirmed that efficacy could be enhanced by modulating NFκB and TNF-α signaling. In conclusion, in early-phase ARDS, primed MSCs displayed enhanced homing capabilities, improved lung function, and reduced inflammation.
5.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
6.Primed Mesenchymal Stem Cells by IFN-γγ and IL-1β Ameliorate Acute Respiratory Distress Syndrome through Enhancing Homing Effect and Immunomodulation
Taeho KONG ; Su Kyoung SEO ; Yong-Seok HAN ; Woo Min SEO ; Bokyong KIM ; Jieun KIM ; Young-Jae CHO ; Seunghee LEE ; Kyung-Sun KANG
Biomolecules & Therapeutics 2025;33(2):311-324
Acute Respiratory Distress Syndrome (ARDS) is a severe condition characterized by extensive lung inflammation and increased alveolar-capillary permeability, often triggered by infections or systemic inflammatory responses. Mesenchymal stem cells (MSCs)-based therapy holds promise for treating ARDS, as MSCs manifest immunomodulatory and regenerative properties that mitigate inflammation and enhance tissue repair. Primed MSCs, modified to augment specific functionalities, demonstrate superior therapeutic efficacy in targeted therapies compared to naive MSCs. This study explored the immunomodulatory potential of MSCs using mixed lymphocyte reaction (MLR) assays and co-culture experiments with M1/M2 macrophages. Additionally, RNA sequencing was employed to identify alterations in immune and inflammation-related factors in primed MSCs. The therapeutic effects of primed MSCs were assessed in an LPS-induced ARDS mouse model, and the underlying mechanisms were investigated through spatial transcriptomics analysis. The study revealed that MSCs primed with IFN-γ and IL-1β significantly enhanced the suppression of T cell activity compared to naive MSCs, concurrently inhibiting TNF-α while increasing IL-10 production in macrophages. Notably, combined treatment with these two cytokines resulted in a significant upregulation of immune and inflammation-regulating factors. Furthermore, our analyses elucidated the mechanisms behind the therapeutic effects of primed MSCs, including the inhibition of inflammatory cell infiltration in lung tissue, modulation of immune and inflammatory responses, and enhancement of elastin fiber formation. Signaling pathway analysis confirmed that efficacy could be enhanced by modulating NFκB and TNF-α signaling. In conclusion, in early-phase ARDS, primed MSCs displayed enhanced homing capabilities, improved lung function, and reduced inflammation.
7.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
8.The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2024;54(10):653-668
Background and Objectives:
This study aimed to analyze the outcomes of Fontan surgery in the Republic of Korea, as there were only a few studies from Asian countries.
Methods:
The medical records of 1,732 patients who underwent Fontan surgery in 10 cardiac centers were reviewed.
Results:
Among them, 1,040 (58.8%) were men. The mean age at Fontan surgery was 4.3±4.2 years, and 395 (22.8%) patients presented with heterotaxy syndrome. According to the types of Fontan surgery, 157 patients underwent atriopulmonary (AP) type; 303, lateral tunnel (LT) type; and 1,266, extracardiac conduit (ECC) type. The overall survival rates were 91.7%, 87.1%, and 74.4% at 10, 20, and 30 years, respectively. The risk factors of early mortality were male, heterotaxy syndrome, AP-type Fontan surgery, high mean pulmonary artery pressure (mPAP) in pre-Fontan cardiac catheterization, and early Fontan surgery year. The risk factors of late mortality were heterotaxy syndrome, genetic disorder, significant atrioventricular valve regurgitation (AVVR) before Fontan surgery, high mPAP in pre-Fontan cardiac catheterization, and no fenestration.
Conclusions
In Asian population with a high incidence of heterotaxy syndrome, the heterotaxy syndrome was identified as the poor prognostic factors for Fontan surgery. The preoperative low mPAP and less AVVR are associated with better early and long-term outcomes of Fontan surgery.
9.The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2024;54(10):653-668
Background and Objectives:
This study aimed to analyze the outcomes of Fontan surgery in the Republic of Korea, as there were only a few studies from Asian countries.
Methods:
The medical records of 1,732 patients who underwent Fontan surgery in 10 cardiac centers were reviewed.
Results:
Among them, 1,040 (58.8%) were men. The mean age at Fontan surgery was 4.3±4.2 years, and 395 (22.8%) patients presented with heterotaxy syndrome. According to the types of Fontan surgery, 157 patients underwent atriopulmonary (AP) type; 303, lateral tunnel (LT) type; and 1,266, extracardiac conduit (ECC) type. The overall survival rates were 91.7%, 87.1%, and 74.4% at 10, 20, and 30 years, respectively. The risk factors of early mortality were male, heterotaxy syndrome, AP-type Fontan surgery, high mean pulmonary artery pressure (mPAP) in pre-Fontan cardiac catheterization, and early Fontan surgery year. The risk factors of late mortality were heterotaxy syndrome, genetic disorder, significant atrioventricular valve regurgitation (AVVR) before Fontan surgery, high mPAP in pre-Fontan cardiac catheterization, and no fenestration.
Conclusions
In Asian population with a high incidence of heterotaxy syndrome, the heterotaxy syndrome was identified as the poor prognostic factors for Fontan surgery. The preoperative low mPAP and less AVVR are associated with better early and long-term outcomes of Fontan surgery.
10.Navigation-Guided/Robot-Assisted Spinal Surgery: A Review Article
Young-Seok LEE ; Dae-Chul CHO ; Kyoung-Tae KIM
Neurospine 2024;21(1):8-17
The development of minimally invasive spinal surgery utilizing navigation and robotics has significantly improved the feasibility, accuracy, and efficiency of this surgery. In particular, these methods provide improved accuracy of pedicle screw placement, reduced radiation exposure, and shortened learning curves for surgeons. However, research on the clinical outcomes and cost-effectiveness of navigation and robot-assisted spinal surgery is still in its infancy. Therefore, there is limited available evidence and this makes it difficult to draw definitive conclusions regarding the long-term benefits of these technologies. In this review article, we provide a summary of the current navigation and robotic spinal surgery systems. We concluded that despite the progress that has been made in recent years, and the clear advantages these methods can provide in terms of clinical outcomes and shortened learning curves, cost-effectiveness remains an issue. Therefore, future studies are required to consider training costs, variable initial expenses, maintenance and service fees, and operating costs of these advanced platforms so that they are feasible for implementation in standard clinical practice.

Result Analysis
Print
Save
E-mail