1.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
2.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
3.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
4.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
5.Glioblastoma in a paper industry worker exposed to high concentrations of formaldehyde: a case report
Youngshin LEE ; Jiwoon KWON ; Miyeon JANG ; Seongwon MA ; Kyo Yeon JUN ; Minjoo YOON ; Shinhee YE
Annals of Occupational and Environmental Medicine 2024;36(1):e17-
Formaldehyde was classified as a Group I Carcinogen by the International Agency for Research on Cancer (IARC) in 2006. While the IARC has stated that there is a lack of evidence that formaldehyde causes brain cancer, three meta-analyses have consistently reported a significantly higher risk of brain cancer in workers exposed to high levels of formaldehyde. Therefore, we report a case of a worker who was diagnosed with glioblastoma after being exposed to high concentrations of formaldehyde while working with formaldehyde resin in the paper industry. A 40-year-old male patient joined an impregnated paper manufacturer and performed impregnation work using formaldehyde resin for 10 years and 2 months. In 2017, the patient experienced a severe headache and visited the hospital for brain magnetic resonance imaging, which revealed a mass. In the same year, the patient underwent a craniotomy for brain tumor resection and was diagnosed with glioblastoma of the temporal lobe. In 2019, a craniotomy was performed owing to the recurrence of the brain tumor, but he died in 2020. An exposure assessment of the work environment determined that the patient was exposed to formaldehyde above the exposure threshold of 0.3 ppm continuously for more than 10 years and that he had high respiratory and dermal exposure through performing work without wearing a respirator or protective gloves. This case report represents the first instance where the epidemiological investigation and evaluation committee of the Occupational Safety and Health Research Institute in Korea recognized the scientific evidence of work-related brain tumors due to long-term exposure to high concentrations of formaldehyde during impregnated paperwork. This case highlights the importance of proper workplace management, informing workers that prolonged exposure to formaldehyde in impregnation work can cause brain tumors and minimizing exposure in similar processes.
6.Glioblastoma in a paper industry worker exposed to high concentrations of formaldehyde: a case report
Youngshin LEE ; Jiwoon KWON ; Miyeon JANG ; Seongwon MA ; Kyo Yeon JUN ; Minjoo YOON ; Shinhee YE
Annals of Occupational and Environmental Medicine 2024;36(1):e17-
Formaldehyde was classified as a Group I Carcinogen by the International Agency for Research on Cancer (IARC) in 2006. While the IARC has stated that there is a lack of evidence that formaldehyde causes brain cancer, three meta-analyses have consistently reported a significantly higher risk of brain cancer in workers exposed to high levels of formaldehyde. Therefore, we report a case of a worker who was diagnosed with glioblastoma after being exposed to high concentrations of formaldehyde while working with formaldehyde resin in the paper industry. A 40-year-old male patient joined an impregnated paper manufacturer and performed impregnation work using formaldehyde resin for 10 years and 2 months. In 2017, the patient experienced a severe headache and visited the hospital for brain magnetic resonance imaging, which revealed a mass. In the same year, the patient underwent a craniotomy for brain tumor resection and was diagnosed with glioblastoma of the temporal lobe. In 2019, a craniotomy was performed owing to the recurrence of the brain tumor, but he died in 2020. An exposure assessment of the work environment determined that the patient was exposed to formaldehyde above the exposure threshold of 0.3 ppm continuously for more than 10 years and that he had high respiratory and dermal exposure through performing work without wearing a respirator or protective gloves. This case report represents the first instance where the epidemiological investigation and evaluation committee of the Occupational Safety and Health Research Institute in Korea recognized the scientific evidence of work-related brain tumors due to long-term exposure to high concentrations of formaldehyde during impregnated paperwork. This case highlights the importance of proper workplace management, informing workers that prolonged exposure to formaldehyde in impregnation work can cause brain tumors and minimizing exposure in similar processes.
7.Glioblastoma in a paper industry worker exposed to high concentrations of formaldehyde: a case report
Youngshin LEE ; Jiwoon KWON ; Miyeon JANG ; Seongwon MA ; Kyo Yeon JUN ; Minjoo YOON ; Shinhee YE
Annals of Occupational and Environmental Medicine 2024;36(1):e17-
Formaldehyde was classified as a Group I Carcinogen by the International Agency for Research on Cancer (IARC) in 2006. While the IARC has stated that there is a lack of evidence that formaldehyde causes brain cancer, three meta-analyses have consistently reported a significantly higher risk of brain cancer in workers exposed to high levels of formaldehyde. Therefore, we report a case of a worker who was diagnosed with glioblastoma after being exposed to high concentrations of formaldehyde while working with formaldehyde resin in the paper industry. A 40-year-old male patient joined an impregnated paper manufacturer and performed impregnation work using formaldehyde resin for 10 years and 2 months. In 2017, the patient experienced a severe headache and visited the hospital for brain magnetic resonance imaging, which revealed a mass. In the same year, the patient underwent a craniotomy for brain tumor resection and was diagnosed with glioblastoma of the temporal lobe. In 2019, a craniotomy was performed owing to the recurrence of the brain tumor, but he died in 2020. An exposure assessment of the work environment determined that the patient was exposed to formaldehyde above the exposure threshold of 0.3 ppm continuously for more than 10 years and that he had high respiratory and dermal exposure through performing work without wearing a respirator or protective gloves. This case report represents the first instance where the epidemiological investigation and evaluation committee of the Occupational Safety and Health Research Institute in Korea recognized the scientific evidence of work-related brain tumors due to long-term exposure to high concentrations of formaldehyde during impregnated paperwork. This case highlights the importance of proper workplace management, informing workers that prolonged exposure to formaldehyde in impregnation work can cause brain tumors and minimizing exposure in similar processes.
8.Clinical Usefulness of ¹â¸F-FC119S Positron-Emission Tomography as an Auxiliary Diagnostic Method for Dementia: An Open-Label, Single-Dose, Evaluator-Blind Clinical Trial
Inki LEE ; Hae Ri NA ; Byung Hyun BYUN ; Ilhan LIM ; Byung Il KIM ; Chang Woon CHOI ; In Ok KO ; Kyo Chul LEE ; Kyeong Min KIM ; Su Yeon PARK ; Yu Keong KIM ; Jun Young LEE ; Seon Hee BU ; Jung Hwa KIM ; Hee Seup KIL ; Chansoo PARK ; Dae Yoon CHI ; Jeong Ho HA ; Sang Moo LIM
Journal of Clinical Neurology 2020;16(1):131-139
BACKGROUND:
AND PURPOSE: The aim of this study was to determine the diagnostic performance and safety of a new ¹â¸F-labeled amyloid tracer, ¹â¸F-FC119S.
METHODS:
This study prospectively recruited 105 participants, comprising 53 with Alzheimer's disease (AD) patients, 16 patients with dementia other than AD (non-AD), and 36 healthy controls (HCs). In the first screening visit, the Seoul Neuropsychological Screening Battery cognitive function test was given to the dementia group, while HC subjects completed the Korean version of the Mini Mental State Examination. Individuals underwent ¹â¸F-FC119S PET, ¹â¸F-fluorodeoxyglucose (FDG) PET, and brain MRI. The diagnostic performance of ¹â¸F-FC119S PET for AD was compared to a historical control (comprising previously reported and currently used amyloid-beta PET agents), ¹â¸F-FDG PET, and MRI. The standardized uptake value (SUV) ratio (ratio of the cerebral cortical SUV to the cerebellar SUV) was measured for each PET data set to provide semiquantitative analysis. All adverse effects during the clinical trial periods were monitored.
RESULTS:
Visual assessments of the ¹â¸F-FC119S PET data revealed a sensitivity of 92% and a specificity of 84% in detecting AD. ¹â¸F-FC119S PET demonstrated equivalent or better diagnostic performance for AD detection than the historical control, ¹â¸F-FDG PET (sensitivity of 80.0% and specificity of 76.0%), and MRI (sensitivity of 98.0% and specificity of 50.0%). The SUV ratios differed significantly between AD patients and the other groups, at 1.44±0.17 (mean±SD) for AD, 1.24±0.09 for non-AD, and 1.21±0.08 for HC. No clinically significant adverse effects occurred during the trial periods.
CONCLUSIONS
¹â¸F-FC119S PET provides high sensitivity and specificity in detecting AD and therefore may be considered a useful diagnostic tool for AD.
9.Delayed contralateral traumatic carotid cavernous fistula after craniomaxillofacial fractures
Hyung Sup SHIM ; Kyo Joon KANG ; Hyuk Joon CHOI ; Yeon Jin JEONG ; Jun Hee BYEON
Archives of Craniofacial Surgery 2019;20(1):44-47
A carotid-cavernous sinus fistula is a rare condition in which an abnormal communication exists between the internal or external carotid artery and the cavernous sinus. It typically occurs within a few weeks after craniomaxillofacial trauma. In most cases, the carotid-cavernous sinus fistula occurs on the same side as the craniomaxillofacial fracture. We report a case of delayed carotidcavernous sinus fistula that developed symptoms 7 months after the craniomaxillofacial fracture. The fistula developed on the side opposite to that of the craniomaxillofacial fracture. Based on our experience with this case, we recommend a long follow-up period of 7–8 months after the occurrence of a craniomaxillofacial fracture. We also recommend that the follow-up should include consideration of the side contralateral to the injury.
Carotid Artery, External
;
Carotid-Cavernous Sinus Fistula
;
Cavernous Sinus
;
Fistula
;
Follow-Up Studies
10.Intrathoracic Desmoid Tumor Presenting as Multiple Lung Nodules 13 Years after Previous Resection of Abdominal Wall Desmoid Tumor.
Gun Woo KOO ; Sung Jun CHUNG ; Joo Hee KWAK ; Chang Kyo OH ; Dong Won PARK ; Hyeon Jung KWAK ; Ji Yong MOON ; Sang Heon KIM ; Jang Won SOHN ; Ho Joo YOON ; Dong Ho SHIN ; Sung Soo PARK ; Young Ha OH ; Ju Yeon PYO ; Tae Hyung KIM
Tuberculosis and Respiratory Diseases 2015;78(3):267-271
Desmoid tumors are rare soft tissue tumors considered to have locally infiltrative features without distant metastasis until now. Although they are most commonly intraabdominal, very few cases have extra-abdominal locations. The origin of intrathoracic desmoid tumors is predominantly the chest wall with occasional involvement of pleura. True intrathoracic primary desmoid tumors with no involvement of the chest wall or pleura are extremely rare. We recently experienced a case of true intrathoracic desmoid tumor presenting as multiple lung nodules at 13 years after resection of a previous intraabdominal desmoid tumor.
Abdominal Wall*
;
Fibromatosis, Aggressive*
;
Lung*
;
Multiple Pulmonary Nodules
;
Neoplasm Metastasis
;
Pleura
;
Thoracic Wall
;
Thorax

Result Analysis
Print
Save
E-mail