1.A Nationwide Survey on Infection Prevention and Control in Acute Care Hospitals of Korea
Sun Hee NA ; Yubin SEO ; Hye Jin SHI ; In Sun HWANG ; Kyong A SHIN ; Kwang Yul SON ; Sung Ran KIM ; Myoungjin SHIN ; Hee-jung SON ; Ji Youn CHOI ; Heekyung CHUN ; Sook-Kyung PARK ; Jeongsuk SONG ; Namyi KIM ; Jacob LEE ; Joong Sik EOM
Journal of Korean Medical Science 2025;40(4):e41-
Background:
Healthcare-associated infections impose a significant burden on antibiotic usage, healthcare expenditures, and morbidity. Therefore, it is crucial to revise policies to minimize such losses. This nationwide survey aimed to evaluate infection prevention and control (IPC) components in healthcare facilities and encourage improvements in acute care hospitals with inadequate infection prevention settings. This study aims to enhance the infection control capabilities of healthcare facilities.
Methods:
From December 27, 2021, to May 13, 2022, we conducted a survey of 1,767 acute care hospitals in the Republic of Korea. A survey was conducted to evaluate the infection control components in 1,767 acute care hospitals. Infection control officers provided direct responses to a systematically developed questionnaire. Subsequently, 10% of the respondents were randomly selected for the site investigation.
Results:
Overall, 1,197 (67.7%) hospitals responded to the online survey. On-site investigations were conducted at 125 hospitals. Hospitals with ≥ 150 beds are advised to have an IPC team under Article 3 of the Medical Service Act; however, only 87.0% (598/687) of hospitals with ≥ 100 beds had one. Conversely, 22.7% (116/510) of hospitals with < 100 beds had an IPC team. Regulations for hand hygiene, waste management, healthcare worker protection and safety, environmental cleaning, standard precautions, and prevention of the transmission of multidrug-resistant pathogens were present in 84.2%, 80.1%, 77.4%, 76.2%, 75.8%, and 63.5% of the hospitals, respectively. Hospitals with < 100 beds had low availability of all categories of standard operating procedures.
Conclusion
This study is the first national survey of acute care hospitals in the Republic of Korea. The data presented in the current study will improve the understanding of IPC status and will help establish a survey system. Our survey provides a basis for improving policies related to IPC in healthcare facilities.
2.A Nationwide Survey on Infection Prevention and Control in Acute Care Hospitals of Korea
Sun Hee NA ; Yubin SEO ; Hye Jin SHI ; In Sun HWANG ; Kyong A SHIN ; Kwang Yul SON ; Sung Ran KIM ; Myoungjin SHIN ; Hee-jung SON ; Ji Youn CHOI ; Heekyung CHUN ; Sook-Kyung PARK ; Jeongsuk SONG ; Namyi KIM ; Jacob LEE ; Joong Sik EOM
Journal of Korean Medical Science 2025;40(4):e41-
Background:
Healthcare-associated infections impose a significant burden on antibiotic usage, healthcare expenditures, and morbidity. Therefore, it is crucial to revise policies to minimize such losses. This nationwide survey aimed to evaluate infection prevention and control (IPC) components in healthcare facilities and encourage improvements in acute care hospitals with inadequate infection prevention settings. This study aims to enhance the infection control capabilities of healthcare facilities.
Methods:
From December 27, 2021, to May 13, 2022, we conducted a survey of 1,767 acute care hospitals in the Republic of Korea. A survey was conducted to evaluate the infection control components in 1,767 acute care hospitals. Infection control officers provided direct responses to a systematically developed questionnaire. Subsequently, 10% of the respondents were randomly selected for the site investigation.
Results:
Overall, 1,197 (67.7%) hospitals responded to the online survey. On-site investigations were conducted at 125 hospitals. Hospitals with ≥ 150 beds are advised to have an IPC team under Article 3 of the Medical Service Act; however, only 87.0% (598/687) of hospitals with ≥ 100 beds had one. Conversely, 22.7% (116/510) of hospitals with < 100 beds had an IPC team. Regulations for hand hygiene, waste management, healthcare worker protection and safety, environmental cleaning, standard precautions, and prevention of the transmission of multidrug-resistant pathogens were present in 84.2%, 80.1%, 77.4%, 76.2%, 75.8%, and 63.5% of the hospitals, respectively. Hospitals with < 100 beds had low availability of all categories of standard operating procedures.
Conclusion
This study is the first national survey of acute care hospitals in the Republic of Korea. The data presented in the current study will improve the understanding of IPC status and will help establish a survey system. Our survey provides a basis for improving policies related to IPC in healthcare facilities.
3.A Nationwide Survey on Infection Prevention and Control in Acute Care Hospitals of Korea
Sun Hee NA ; Yubin SEO ; Hye Jin SHI ; In Sun HWANG ; Kyong A SHIN ; Kwang Yul SON ; Sung Ran KIM ; Myoungjin SHIN ; Hee-jung SON ; Ji Youn CHOI ; Heekyung CHUN ; Sook-Kyung PARK ; Jeongsuk SONG ; Namyi KIM ; Jacob LEE ; Joong Sik EOM
Journal of Korean Medical Science 2025;40(4):e41-
Background:
Healthcare-associated infections impose a significant burden on antibiotic usage, healthcare expenditures, and morbidity. Therefore, it is crucial to revise policies to minimize such losses. This nationwide survey aimed to evaluate infection prevention and control (IPC) components in healthcare facilities and encourage improvements in acute care hospitals with inadequate infection prevention settings. This study aims to enhance the infection control capabilities of healthcare facilities.
Methods:
From December 27, 2021, to May 13, 2022, we conducted a survey of 1,767 acute care hospitals in the Republic of Korea. A survey was conducted to evaluate the infection control components in 1,767 acute care hospitals. Infection control officers provided direct responses to a systematically developed questionnaire. Subsequently, 10% of the respondents were randomly selected for the site investigation.
Results:
Overall, 1,197 (67.7%) hospitals responded to the online survey. On-site investigations were conducted at 125 hospitals. Hospitals with ≥ 150 beds are advised to have an IPC team under Article 3 of the Medical Service Act; however, only 87.0% (598/687) of hospitals with ≥ 100 beds had one. Conversely, 22.7% (116/510) of hospitals with < 100 beds had an IPC team. Regulations for hand hygiene, waste management, healthcare worker protection and safety, environmental cleaning, standard precautions, and prevention of the transmission of multidrug-resistant pathogens were present in 84.2%, 80.1%, 77.4%, 76.2%, 75.8%, and 63.5% of the hospitals, respectively. Hospitals with < 100 beds had low availability of all categories of standard operating procedures.
Conclusion
This study is the first national survey of acute care hospitals in the Republic of Korea. The data presented in the current study will improve the understanding of IPC status and will help establish a survey system. Our survey provides a basis for improving policies related to IPC in healthcare facilities.
4.A Nationwide Survey on Infection Prevention and Control in Acute Care Hospitals of Korea
Sun Hee NA ; Yubin SEO ; Hye Jin SHI ; In Sun HWANG ; Kyong A SHIN ; Kwang Yul SON ; Sung Ran KIM ; Myoungjin SHIN ; Hee-jung SON ; Ji Youn CHOI ; Heekyung CHUN ; Sook-Kyung PARK ; Jeongsuk SONG ; Namyi KIM ; Jacob LEE ; Joong Sik EOM
Journal of Korean Medical Science 2025;40(4):e41-
Background:
Healthcare-associated infections impose a significant burden on antibiotic usage, healthcare expenditures, and morbidity. Therefore, it is crucial to revise policies to minimize such losses. This nationwide survey aimed to evaluate infection prevention and control (IPC) components in healthcare facilities and encourage improvements in acute care hospitals with inadequate infection prevention settings. This study aims to enhance the infection control capabilities of healthcare facilities.
Methods:
From December 27, 2021, to May 13, 2022, we conducted a survey of 1,767 acute care hospitals in the Republic of Korea. A survey was conducted to evaluate the infection control components in 1,767 acute care hospitals. Infection control officers provided direct responses to a systematically developed questionnaire. Subsequently, 10% of the respondents were randomly selected for the site investigation.
Results:
Overall, 1,197 (67.7%) hospitals responded to the online survey. On-site investigations were conducted at 125 hospitals. Hospitals with ≥ 150 beds are advised to have an IPC team under Article 3 of the Medical Service Act; however, only 87.0% (598/687) of hospitals with ≥ 100 beds had one. Conversely, 22.7% (116/510) of hospitals with < 100 beds had an IPC team. Regulations for hand hygiene, waste management, healthcare worker protection and safety, environmental cleaning, standard precautions, and prevention of the transmission of multidrug-resistant pathogens were present in 84.2%, 80.1%, 77.4%, 76.2%, 75.8%, and 63.5% of the hospitals, respectively. Hospitals with < 100 beds had low availability of all categories of standard operating procedures.
Conclusion
This study is the first national survey of acute care hospitals in the Republic of Korea. The data presented in the current study will improve the understanding of IPC status and will help establish a survey system. Our survey provides a basis for improving policies related to IPC in healthcare facilities.
5.Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells
Youn Kyung CHOI ; Jung-Il KANG ; Jin Won HYUN ; Young Sang KOH ; Ji-Hoon KANG ; Chang-Gu HYUN ; Kyung-Sup YOON ; Kwang Sik LEE ; Chun Mong LEE ; Tae Yang KIM ; Eun-Sook YOO ; Hee-Kyoung KANG
Biomolecules & Therapeutics 2021;29(2):211-219
Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β ( Ser9 ) and β-catenin (Ser 552 and Ser675 ). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202 /Tyr204 )-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.
6.Clinical and Technical Guideline for Endoscopic Ultrasound (EUS)-Guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy (KSGE)
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
Gut and Liver 2021;15(3):354-374
Endoscopic ultrasound (EUS)-guided tissue acquisition of pancreatic solid tumor requires a strict recommendation for its proper use in clinical practice because of its technical difficulty and invasiveness. The Korean Society of Gastrointestinal Endoscopy (KSGE) appointed a task force to draft clinical practice guidelines for EUS-guided tissue acquisition of pancreatic solid tumor. The strength of recommendation and the level of evidence for each statement were graded according to the Minds Handbook for Clinical Practice Guideline Development 2014. The committee, comprising a development panel of 16 endosonographers and an expert on guideline development methodology, developed 12 evidence-based recommendations in eight categories intended to help physicians make evidence-based clinical judgments with regard to the diagnosis of pancreatic solid tumor. This clinical practice guideline discusses EUS-guided sampling in pancreatic solid tumor and makes recommendations on circumstances that warrant its use, technical issues related to maximizing the diagnostic yield (e.g., needle type, needle diameter, adequate number of needle passes, sample obtaining techniques, and methods of specimen processing), adverse events of EUS-guided tissue acquisition, and learning-related issues. This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This guideline may not be applicable for all clinical situations and should be interpreted in light of specific situations and the availability of resources. It will be revised as necessary to cover progress and changes in technology and evidence from clinical practice.
7.Clinical and Technical Guideline for Endoscopic Ultrasound-Guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
Korean Journal of Pancreas and Biliary Tract 2021;26(3):125-147
Endoscopic ultrasound (EUS)-guided tissue acquisition of pancreatic solid tumor requires a strict recommendation for its proper use in clinical practice because of its technical difficulty and invasiveness. The Korean Society of Gastrointestinal Endoscopy appointed a Task Force to draft clinical practice guidelines for EUS-guided tissue acquisition of pancreatic solid tumor. The strength of recommendation and the level of evidence for each statement were graded according to the Minds Handbook for Clinical Practice Guideline Development 2014. The committee, comprising a development panel of 16 endosonographers and an expert on guideline development methodology, developed 12 evidence-based recommendations in eight categories intended to help physicians make evidence-based clinical judgments with regard to the diagnosis of pancreatic solid tumor. This clinical practice guideline discusses EUS-guided sampling in pancreatic solid tumor and makes recommendations on circumstances that warrant its use, technical issues related to maximizing the diagnostic yield (e.g., needle type, needle diameter, adequate number of needle passes, sample obtaining techniques, and methods of specimen processing), adverse events of EUS-guided tissue acquisition, and learning-related issues. This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This guideline may not be applicable for all clinical situations and should be interpreted in light of specific situations and the availability of resources. It will be revised as necessary to cover progress and changes in technology and evidence from clinical practice.
8.Clinical and Technical Guideline for Endoscopic Ultrasound-guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
The Korean Journal of Gastroenterology 2021;78(2):73-93
Endoscopic ultrasound (EUS)-guided tissue acquisition of pancreatic solid tumor requires a strict recommendation for its proper use in clinical practice because of its technical difficulty and invasiveness. The Korean Society of Gastrointestinal Endoscopy appointed a Task Force to draft clinical practice guidelines for EUS-guided tissue acquisition of pancreatic solid tumor. The strength of recommendation and the level of evidence for each statement were graded according to the Minds Handbook for Clinical Practice Guideline Development 2014. The committee, comprising a development panel of 16 endosonographers and an expert on guideline development methodology, developed 12 evidence-based recommendations in eight categories intended to help physicians make evidence-based clinical judgments with regard to the diagnosis of pancreatic solid tumor. This clinical practice guideline discusses EUS-guided sampling in pancreatic solid tumor and makes recommendations on circumstances that warrant its use, technical issues related to maximizing the diagnostic yield (e.g., needle type, needle diameter, adequate number of needle passes, sample obtaining techniques, and methods of specimen processing), adverse events of EUS-guided tissue acquisition, and learning-related issues.This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This guideline may not be applicable for all clinical situations and should be interpreted in light of specific situations and the availability of resources. It will be revised as necessary to cover progress and changes in technology and evidence from clinical practice
9.Clinical and Technical Guideline for Endoscopic Ultrasound (EUS)-Guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy (KSGE)
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
Clinical Endoscopy 2021;54(2):161-181
Endoscopic ultrasound (EUS)-guided tissue acquisition of pancreatic solid tumor requires a strict recommendation for its proper use in clinical practice because of its technical difficulty and invasiveness. The Korean Society of Gastrointestinal Endoscopy (KSGE) appointed a Task Force to draft clinical practice guidelines for EUS-guided tissue acquisition of pancreatic solid tumor. The strength of recommendation and the level of evidence for each statement were graded according to the Minds Handbook for Clinical Practice Guideline Development 2014. The committee, comprising a development panel of 16 endosonographers and an expert on guideline development methodology, developed 12 evidence-based recommendations in 8 categories intended to help physicians make evidence-based clinical judgments with regard to the diagnosis of pancreatic solid tumor. This clinical practice guideline discusses EUS-guided sampling in pancreatic solid tumor and makes recommendations on circumstances that warrant its use, technical issues related to maximizing the diagnostic yield (e.g., needle type, needle diameter, adequate number of needle passes, sample obtaining techniques, and methods of specimen processing), adverse events of EUS-guided tissue acquisition, and learning-related issues. This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This guideline may not be applicable for all clinical situations and should be interpreted in light of specific situations and the availability of resources. It will be revised as necessary to cover progress and changes in technology and evidence from clinical practice.
10.Clinical and Technical Guideline for Endoscopic Ultrasound-Guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
Korean Journal of Pancreas and Biliary Tract 2021;26(4):263-264

Result Analysis
Print
Save
E-mail