1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
		                        		
		                        		
		                        		
		                        	
2.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
		                        		
		                        		
		                        		
		                        	
3.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
		                        		
		                        		
		                        		
		                        	
4.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
		                        		
		                        			
		                        			 This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases. 
		                        		
		                        		
		                        		
		                        	
5.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
		                        		
		                        			
		                        			 This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases. 
		                        		
		                        		
		                        		
		                        	
6.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
		                        		
		                        			
		                        			 This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases. 
		                        		
		                        		
		                        		
		                        	
7.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
		                        		
		                        			
		                        			 This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases. 
		                        		
		                        		
		                        		
		                        	
8.Brain Frailty and Outcomes of Acute Minor Ischemic Stroke With Large-Vessel Occlusion
Je-Woo PARK ; Joon-Tae KIM ; Ji Sung LEE ; Beom Joon KIM ; Joonsang YOO ; Jung Hoon HAN ; Bum Joon KIM ; Chi Kyung KIM ; Jae Guk KIM ; Sung Hyun BAIK ; Jong-Moo PARK ; Kyusik KANG ; Soo Joo LEE ; Hyungjong PARK ; Jae-Kwan CHA ; Tai Hwan PARK ; Kyungbok LEE ; Jun LEE ; Keun-Sik HONG ; Byung-Chul LEE ; Dong-Eog KIM ; Jay Chol CHOI ; Jee-Hyun KWON ; Dong-Ick SHIN ; Sung Il SOHN ; Sang-Hwa LEE ; Wi-Sun RYU ; Juneyoung LEE ; Hee-Joon BAE
Journal of Clinical Neurology 2024;20(2):175-185
		                        		
		                        			 Background:
		                        			and Purpose The influence of imaging features of brain frailty on outcomes were investigated in acute ischemic stroke patients with minor symptoms and large-vessel occlusion (LVO). 
		                        		
		                        			Methods:
		                        			This was a retrospective analysis of a prospective, multicenter, nationwide registry of consecutive patients with acute (within 24 h) minor (National Institutes of Health Stroke Scale score=0–5) ischemic stroke with anterior circulation LVO (acute minor LVO). Brain frailty was stratified according to the presence of an advanced white-matter hyperintensity (WMH) (Fazekas grade 2 or 3), silent/old brain infarct, or cerebral microbleeds. The primary outcome was a composite of stroke, myocardial infarction, and all-cause mortality within 1 year. 
		                        		
		                        			Results:
		                        			In total, 1,067 patients (age=67.2±13.1 years [mean±SD], 61.3% males) were analyzed. The proportions of patients according to the numbers of brain frailty burdens were as follows: no burden in 49.2%, one burden in 30.0%, two burdens in 17.3%, and three burdens in 3.5%. In the Cox proportional-hazards analysis, the presence of more brain frailty burdens was associated with a higher risk of 1-year primary outcomes, but after adjusting for clinically relevant variables there were no significant associations between burdens of brain frailty and 1-year vascular outcomes. For individual components of brain frailty, an advanced WMH was independently associated with an increased risk of 1-year primary outcomes (adjusted hazard ratio [aHR]=1.33, 95% confidence interval [CI]=1.03–1.71) and stroke (aHR=1.32, 95% CI=1.00–1.75). 
		                        		
		                        			Conclusions
		                        			The baseline imaging markers of brain frailty were common in acute minor ischemic stroke patients with LVO. An advanced WMH was the only frailty marker associated with an increased risk of vascular events. Further research is needed into the association between brain frailty and prognosis in patients with acute minor LVO. 
		                        		
		                        		
		                        		
		                        	
9.Five-Year Overall Survival and Prognostic Factors in Patients with Lung Cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015
Da Som JEON ; Ho Cheol KIM ; Se Hee KIM ; Tae-Jung KIM ; Hong Kwan KIM ; Mi Hyung MOON ; Kyongmin Sarah BECK ; Yang-Gun SUH ; Changhoon SONG ; Jin Seok AHN ; Jeong Eun LEE ; Jeong Uk LIM ; Jae Hyun JEON ; Kyu-Won JUNG ; Chi Young JUNG ; Jeong Su CHO ; Yoo-Duk CHOI ; Seung-Sik HWANG ; Chang-Min CHOI ; ;
Cancer Research and Treatment 2023;55(1):103-111
		                        		
		                        			 Purpose:
		                        			This study aimed to provide the clinical characteristics, prognostic factors, and 5-year relative survival rates of lung cancer diagnosed in 2015. 
		                        		
		                        			Materials and Methods:
		                        			The demographic risk factors of lung cancer were calculated using the KALC-R (Korean Association of Lung Cancer Registry) cohort in 2015, with survival follow-up until December 31, 2020. The 5-year relative survival rates were estimated using Ederer II methods, and the general population data used the death rate adjusted for sex and age published by the Korea Statistical Information Service from 2015 to 2020. 
		                        		
		                        			Results:
		                        			We enrolled 2,657 patients with lung cancer who were diagnosed in South Korea in 2015. Of all patients, 2,098 (79.0%) were diagnosed with non–small cell lung cancer (NSCLC) and 345 (13.0%) were diagnosed with small cell lung cancer (SCLC), respectively. Old age, poor performance status, and advanced clinical stage were independent risk factors for both NSCLC and SCLC. In addition, the 5-year relative survival rate declined with advanced stage in both NSCLC (82%, 59%, 16%, 10% as the stage progressed) and SCLC (16%, 4% as the stage progressed). In patients with stage IV adenocarcinoma, the 5-year relative survival rate was higher in the presence of epidermal growth factor receptor (EGFR) mutation (19% vs. 11%) or anaplastic lymphoma kinase (ALK) translocation (38% vs. 11%). 
		                        		
		                        			Conclusion
		                        			In this Korean nationwide survey, the 5-year relative survival rates of NSCLC were 82% at stage I, 59% at stage II, 16% at stage III, and 10% at stage IV, and the 5-year relative survival rates of SCLC were 16% in cases with limited disease, and 4% in cases with extensive disease. 
		                        		
		                        		
		                        		
		                        	
10.Development of an analytical method for multi-residue quantification of 18 anthelmintics in various animal-based food products using liquid chromatography-tandem mass spectrometry
Yoo KYUNG-HEE ; Park DA-HEE ; El-Aty A.M.ABD ; Kim SEONG-KWAN ; Jung HAE-NI ; Jeong DA-HYE ; Cho HEE-JUNG ; Hacimüftüo?lu AHMET ; Shim JAE-HAN ; Jeong Hoon JI ; Shin HO-CHUL
Journal of Pharmaceutical Analysis 2021;11(1):68-76
		                        		
		                        			
		                        			In this study,we developed a simple screening procedure for the determination of 18 anthelmintics(including benzimidazoles,macrocyclic lactones,salicylanilides,substituted phenols,tetrahydropyr-imidines,and imidazothiazoles)in five animal-derived food matrices(chicken muscle,pork,beef,milk,and egg)using liquid chromatography-tandem mass spectrometry.Analytes were extracted using acetonitrile/1%acetic acid(milk and egg)and acetonitrile/1%acetic acid with 0.5 mL of distilled water(chicken muscle,pork,and beef),and purified using saturated n-hexane/acetonitrile.A reversed-phase analytical column and a mobile phase consisting of(A)10 mM ammonium formate in distilled water and(B)methanol were used to achieve optimal chromatographic separation.Matrix-matched standard calibration curves(R2≥0.9752)were obtained for concentration equivalent to ×1/2,×1,×2,×3,×4,and ×5 fold the maximum residue limit(MRL)stipulated by the Korean Ministry of Food and Drug Safety.Recoveries of 61.2-118.4%,with relative standard deviations(RSDs)of ≤19.9%(intraday and interday),were obtained for each sample at three spiking concentrations(×1/2,×1,and ×2 the MRL values).Limits of detection,limits of quantification,and matrix effects were 0.02-5.5 μg/kg,0.06-10 μg/kg,and-98.8 to 13.9%(at 20 μg/kg),respectively.In five samples of each food matrix(chicken muscle,pork,beef,milk,and egg)purchased from large retailers in Seoul that were tested,none of the target analytes were detected.It has therefore been shown that this protocol is adaptable,accurate,and precise for the quantification of anthelmintic residues in foods of animal origin.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail