1.Analysis of abnormal ALT in blood donors in five Zang autonomous prefectures of Qinghai Province, China: characteristics and screening strategies
Yingnan DANG ; ; Rong TANG ; Liqin HUANG ; Hailin WU ; Tingting CHEN ; Shengju LI ; Yanli SUN ; Xin ZHENG ; Yanxia LI ; Xianlin YE ; Jinfeng ZENG
Chinese Journal of Blood Transfusion 2025;38(4):502-507
[Objective] To investigate the factors associated with alanine aminotransferase (ALT) abnormalities in multi-ethnic blood donors across five Zang autonomous prefectures in the plateau regions of Qinghai Province, and to provide evidence for ensuring blood safety and formulating screening strategies. [Methods] A retrospective analysis was performed on the ALT abnormal test results of blood donors in the Zang autonomous prefectures of Qinghai from 2022 to 2024. The correlations between ALT levels and factors including gender, age, altitude, and infectious markers were investigated. [Results] The overall ALT unqualified rate among blood donors in this region was 9.01%. Significant differences in ALT levels were observed across genders and age groups (P<0.05). Variations in ALT abnormality rates were also noted among different plateau regions (P<0.05). Overall, ALT values exhibited an increasing trend with rising altitude. The average ALT unqualified rates were 11.19% in Zang donors, 7.96% in Han donors, and 4.79% in donors from other ethnic groups (P<0.05). No statistically significant association was observed between ALT abnormality and the presence of HBV/HCV infectious markers (P>0.05). [Conclusion] In the plateau areas of Qinghai, multi-ethnic blood donors have a relatively high ALT levels and ALT unqualified rates, showing distinct regional characteristics. ALT elevation in voluntary blood donors is related to non-pathological factors such as gender, age, and dietary habits, but not to infectious indicators.
2.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
3.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
4.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
5.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
6.Genetic Homology Analysis of Bloodstream Infection Secondary to Intestinal Colonization with Carbapenem-Resistant Klebsiella Pneumoniae
Xinyue LI ; Hongjuan ZHANG ; Xiaoyan ZHU ; Meijia HUANG ; Yunmin XU ; Xundie LI ; Xinyi ZHENG ; Shaoxuan LI ; Bin SHAN
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1138-1147
To investigate the genetic relatedness between carbapenem-resistant A retrospective analysis was conducted on clinical data from patients screened for carbapenem-resistant Among 12 878 patients screened for CRE, 60 (0.47%) were identified with intestinal CRKP colonization. Of these, 6 (10.0%) developed bloodstream infections, with an all-cause mortality rate of 66.7% (4/6) during hospitalization. The predominant strain type among paired isolates was ST11-KL64 producing KPC-2, accounting for 91.7%(11/12) of cases. Except for one patient(with a categorical agreement of 82.6%), colonizing and bloodstream isolates from the same patient showed complete agreement (100% categorical agreement) in antimicrobial susceptibility profiles for all antibiotics except tigecycline. Intraclass correlation coefficients for biofilm formation and siderophore production were both > 0.75 of all paired strains, indicating high phenotypic consistency. Except for one patient, core genome single nucleotide polymorphism (SNP) analysis and phylogenetic reconstruction revealed high genetic homology between colonizing and bloodstream isolates from the same patient (SNP difference < 10). Clonal relatedness was also observed among colonizing strains from different departments (SNP difference < 120). Although the intestinal colonization rate of CRKP is low, it poses a high mortality risk once bloodstream infection occurs. The high consistency in antimicrobial resistance profiles, biofilm formation, siderophore production, and genomic homology between colonizing and bloodstream isolates suggests that intestinal colonization is the direct source of subsequent invasive infection. Enhanced early screening, dynamic monitoring, risk-stratified prevention, and optimized intervention strategies are recommended to reduce the risk of CRKP infection and mortality.
8.Anemoside B4 inhibits SARS-CoV-2 replication in vitro and in vivo.
Mingyue XIAO ; Ronghua LUO ; Qinghua LIANG ; Honglv JIANG ; Yanli LIU ; Guoqiang XU ; Hongwei GAO ; Yongtang ZHENG ; Qiongming XU ; Shilin YANG
Chinese Herbal Medicines 2024;16(1):106-112
OBJECTIVE:
Anemoside B4 (AB4), the most abundant triterpenoidal saponin isolated from Pulsatilla chinensis, inhibited influenza virus FM1 or Klebsiella pneumoniae-induced pneumonia. However, the anti-SARS-CoV-2 effect of AB4 has not been unraveled. Therefore, this study aimed to determine the antiviral activity and potential mechanism of AB4 in inhibiting human coronavirus SARS-CoV-2 in vivo and in vitro.
METHODS:
The cytotoxicity of AB4 was evaluated using the Cell Counting Kit-8 (CCK8) assay. SARS-CoV-2 infected HEK293T, HPAEpiC, and Vero E6 cells were used for in vitro assays. The antiviral effect of AB4 in vivo was evaluated by SARS-CoV-2-infected hACE2-IRES-luc transgenic mouse model. Furthermore, label-free quantitative proteomics and bioinformatic analysis were performed to explore the potential antiviral mechanism of action of AB4. Type I IFN signaling-associated proteins were assessed using Western blotting or immumohistochemical staining.
RESULTS:
The data showed that AB4 reduced the propagation of SARS-CoV-2 along with the decreased Nucleocapsid protein (N), Spike protein (S), and 3C-like protease (3CLpro) in HEK293T cells. In vivo antiviral activity data revealed that AB4 inhibited viral replication and relieved pneumonia in a SARS-CoV-2 infected mouse model. We further disclosed that the antiviral activity of AB4 was associated with the enhanced interferon (IFN)-β response via the activation of retinoic acid-inducible gene I (RIG-1) like receptor (RLP) pathways. Additionally, label-free quantitative proteomic analyses discovered that 17 proteins were significantly altered by AB4 in the SARS-CoV-2 coronavirus infections cells. These proteins mainly clustered in RNA metabolism.
CONCLUSION
Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.
9.Anti-inflammatory activity and mechanism of Clematis ranunculoides extract
Haishan LI ; Hejin YANG ; Yongren ZHENG
China Pharmacy 2024;35(4):453-458
OBJECTIVE To investigate the anti-inflammatory activity and potential mechanism of Clematis ranunculoides extract. METHODS The ear swelling was induced by xylene to establish an acute inflammation model of mice; using aspirin (0.25 g/kg) as a positive control, the effects of 1.25, 2.5, 5 g/kg C. ranunculoides extract on the degree of ear swelling were investigated. The chronic inflammation model of rats was also established by implanting cotton balls; using aspirin (0.17 g/kg) as a positive control, the effects of 0.88, 1.75, 3.5 g/kg C. ranunculoides extract on the net weight of granulomas were investigated. Furthermore, RAW264.7 cells were induced by lipopolysaccharide to establish an inflammatory injury model; the effects of 12.5, 25, 50 μg/mL C. ranunculoides extract on the contents of nitric oxide(NO), prostaglandin E2(PGE2), tumor necrosis factor-α (TNF-α), interleukin-6(IL-6) and monocyte chemotactic protein-1(MCP-1) in the cell supernatant, the protein expressions of inducible nitric oxide synthase(iNOS), cyclooxygenase-2(COX-2), p65 and phosphorylated p65(p-p65) in cells as well as nuclear translocation of p65 protein were assessed. RESULTS C. ranunculoides extract with 5 g/kg significantly relieved ear swelling in mice, and C. ranunculoides extract with 1.75, 3.5 g/kg significantly decreased the net weight of granulomas in rats (P<0.05). C. ranunculoides extract with 12.5, 25, 50 μg/mL significantly reduced the contents of NO (except for 12.5 μg/mL C. ranunculoides extract), PGE2, TNF-α, IL-6 and MCP-1 in the cell supernatant, as well as the relative expressions of iNOS and COX-2 protein, and relative expression ratio of p-p65 and p65 protein (P<0.05 or P<0.01); C. ranunculoides extract with 25, 50 μg/mL inhibited the translocation of p65 protein to the cell nucleus. CONCLUSIONS C. ranunculoides extract exhibits significant anti- inflammatory activity, the mechanism of which may be attributed to the inhibition of the activation of nuclear factor-κB signaling pathway, down-regulation of COX-2 and iNOS protein expression, and the reduction of inflammatory cytokines release.
10.Technique and Application of Single-molecule Fluorescence in situ Hybridization
Han RUI ; Zheng-Long SUN ; Miao GUAN
Progress in Biochemistry and Biophysics 2024;51(6):1239-1255
Single molecule fluorescence in situ hybridization (smFISH) is a method for imaging single mRNA molecule in fixed cell or tissue using oligonucleotide probes coupled with fluorophores. It can realize real-time study of interested transcripts by RNA localization and quantification. smFISH is widely suitable for many types of biological samples such as cell and tissue sections. It was invented in 1982 which opened up the application of visualizing single molecules. However, due to its shortcomings such as poor binding specificity, Raj et al. optimized this technique in 2008, using 48 independent probes that were separately coupled with fluorophores to locate transcripts. In contrast, methods using multiple labeled probes can distinguish false positive or false negative results due to a single probe misbinding or unbinding event. However, with the continuous application of the technique, it was found that the scheme still has many technical defects, such as low probe specificity, weak fluorescence intensity, low hybridization efficiency, and high background fluorescence. Since then, a series of derivative technologies have been developed. For example, HCR-FISH is a multi-fluorescence in situ hybridization method based on orthogonal amplification and hybridization chain reaction, which significantly improves the problem of weak signal. SeqFISH amplifies the signal and reduces nonspecific binding by continuously hybridizing the mRNA in the cell, imaging it, and stripping the probe in order to barcode RNA. MERFISH utilizes combination labeling, continuous imaging and other technologies to increase detection throughput, and uses binary barcodes to offset single-molecule labeling and detection errors, with more advanced built-in error correction functions to effectively improve the accuracy of results. ClampFISH uses biological orthogonal click chemistry to effectively lock the probe around the target and prevent the probe from disengaging in amplification microscopy. RNAscope amplifies its own signal while simultaneously suppressing the background by using novel probe design strategy and hybridization-based signal amplification system. Split-FISH uses splitting probes for signal enhancement to accurately detect single RNA molecule in complex tissue environments. AmpFISH achieves imaging of short RNA molecules by preparing long single-strand DNA concatemers through controlled rolling circle amplification. CircFISH uses two unique sets of probes (PC probes and PL probes) to distinguish between linear and circular RNAs. π-FISH rainbow enables simultaneous detection of DNA, RNA, and proteins at the single-molecule level with π-FISH target probes. HT-smFISH is more suitable for large or high throughput form of systematic experiments. With the development of technology, the subsequent data analysis process is particularly important. Different analysis software, such as dotdotdot and FISH-quant v2, also improve the process of smFISH. The excellent ability of smFISH to visualize single molecule of RNA makes that it is widely used in basic biological disciplines such as tumor biology, developmental biology, neurobiology, botany, virology. In this paper, we reviewed the basic principle of smFISH technology, its development process and improvement, limitations of smFISH technology and how to avoid them, its derivative technologies include HCR-FISH, SeqFISH, MERFISH, ClampFISH, RNAscope, Split-FISH, AmpFISH, CircFISH, π-FISH rainbow and HT-smFISH. The application progress of smFISH in different biological disciplines, such as developmental biology, tumor biology, neurobiology. Finally, the development prospect of smFISH technology is prospected.

Result Analysis
Print
Save
E-mail