1.Research Advance on Smartphone-based Visual Biosensor in Point-of-Care Testing
Xian-Xin XIANG ; Hua-Yue SUN ; Hui-Ning CHAI ; Kun YU ; Li-Jun QU ; Guang-Yao ZHANG ; Xue-Ji ZHANG
Chinese Journal of Analytical Chemistry 2024;52(2):145-156
Human physiological indicators have become an important standard for assessing health in modern society.Traditional detection methods often require a separate laboratory,complex operation process and long detection time,so it is urgent to develop portable,fast and accurate on-site detection technologies for bioanalysis.Point-of-care testing(POCT),which differs from traditional laboratory testing,can realize the rapid in situ detection of biomarkers without the complicated analytical process of the laboratory.Smartphones,which are an essential tool in our daily life,not only have independent operating systems and built-in storage functions,but also have high-definition cameras,which have great application potential in POCT visualization.The combination of various biosensing technologies and smartphones has developed into a new direction in the field of POCT.This review mainly introduced the research progress of smartphone-based visual biosensors in POCT in recent years,including colorimetric sensors,fluorescence sensors,chemiluminescence sensors and electrochemiluminescence sensors.Finally,the problems faced by smart-phone-based visual biosensors in the application of POCT were summarized,and their future development was prospected.
2.Mechanism of Yes-Associated Protein 1 Ameliorating Aristolochic Acid 1-Induced Liver Injury in Mice Based on Untargeted Metabolomics Techniques
Yu XUE ; Caige LI ; Yiwei LIU ; Jiali YANG ; Zhiqin ZHANG ; Jingmin JI ; Kun YU ; Xinli SHI
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(1):46-55
Objective To investigate the mechanism of Yes-associated protein 1(YAP1)ameliorating aristolochic acid 1(AAI)-induced liver injury in mice based on untargeted metabolomics techniques.Methods There were 83-week-old male hepatocyte-specific Yap1 gene knockout mice(genotyped as Yap1Flox/Flox,Albumin-Cre,aka.Yap1LKO)were randomly selected as the Yap1LKO+AAI group,and 8 Yap1Flox control mice as the Yap1Flox+AAI group.Both groups were injected intraperitoneally with AAI at a dose of 2.5 mg·kg-1·d-1 for 14 consecutive days.Genotypes were identified by tail PCR;serum alanine transaminase(ALT)and aspartate transaminase(AST)activities were determined by microplate assay;histopathological changes of liver tissue were observed by HE staining;and the protein expression of YAP1 in liver tissue was determined by immunohistochemistry.The untargeted metabolomics approach was used to analyze the liver tissue differential metabolites,and the samples were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbit trap high-resolution mass spectrometry,and the differential metabolites were screened by principal component analysis(PCA),Partial least square-discriminant analysis(PLS-DA),and orthogonal partial least squares-discriminant analysis(OPLS-DA);using HMDB database and METLIN database to identify metabolites,and the pathway enrichment of differential metabolites was analyzed by KEGG database.Results(1)After 14 days of AAI induction,the increase of body mass in Yap1LKO mice was lower than that in Yap1Flox mice,but there was no statistical significance(P>0.05).On day 14,compared with the Yap1Flox+AAI group,the serum ALT and AST enzyme activities in the Yap1LKO+AAI group of mice were significantly increased(P<0.05),and the histopathological damage of the liver was significantly aggravated.The livers of the Yap1Flox mice had a positive protein expression of YAP1,whereas the Yap1LKO mice did not have a positive protein expression of YAP1.(2)A total of 139 differential metabolites with significant changes(VIP>1 and P<0.05)were screened by metabonomic analysis;compared with Yap1LKO+ AAI group,62 liver metabolites in Yap1Flox+AAI group were up-regulated,including choline,taurine,hypotaurine,α-linolenic acid,eleostearic acid,chenodeoxycholic acid and so on.Seventy-seven metabolites were down-regulated including glycerophosphocholine,L-phosphatidylcholine,L-glutamine,L-serine,L-glutathione,5-methionine,phenylalanine,glucose 6-phosphate,lactic acid,uric acid glycosides,etc..KEGG-enriched pathways were mainly choline metabolism,glycerophospholipid metabolism,insulin resistance,glutathione metabolism,etc..Conclusion Hepatocyte-specific Yap1 gene knockout exacerbated AAI-induced liver injury in mice,and YAP1 was involved in the regulation of choline metabolism and glycerophospholipid metabolism through the up-regulation of unsaturated fatty acids,such as choline and taurine,which ameliorated AAI-induced liver injury in mice.
3.Research progress on esophageal squamous intraepithelial neoplasia
Shan GAO ; Kun JI ; Li ZHAO ; Yu-Jia XING ; Yandong XIE ; Xiqiang CAI
The Journal of Practical Medicine 2024;40(3):432-438
China is a country with a high incidence of esophageal cancer.The pathological type is mainly squamous cell carcinoma.Squamous intraepithelial neoplasia is the most recognized precancerous lesion of esopha-geal squamous cell carcinoma,and its monitoring and intervention is an effective method to reduce the incidence of esophageal squamous cell carcinoma and improve the quality of life of patients.Understanding the etiology,clinical features,diagnosis and treatment of esophageal squamous cell carcinoma plays a crucial role in the prevention and early diagnosis and treatment of esophageal squamous cell carcinoma.At present,the clinical research related to esophageal squamous intraepithelial neoplasia is still insufficient,and there are some differences in clinical treat-ment.This review summarizes the risk factors,clinical features,diagnosis,prognosis and treatment of esophageal squamous intraepithelial neoplasia,hoping to provide ideas for the clinical management of esophageal squamous intraepithelial neoplasia.
4.Discussion on the Manual Therapy for Cervical Spondylotic Radiculopathy Based on the Classification of Tendons,Joints,Bones and Marrow
Yong-Jin LI ; Fang-Zheng LIN ; Shu-Dong CHEN ; Ji-Heng ZHAN ; Yu HOU ; Ji QI ; Xiao-Long ZENG ; Zi-Bo GAO ; Ding-Kun LIN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2596-2600
Cervical spondylotic radiculopathy(CSR)is a condition caused by the degeneration of cervical intervertebral discs and facet joints,primarily manifesting as the pain,sensory abnormalities,and motor dysfunction in the cervical nerve innervation area of neck,shoulder,and upper limb.For the treatment of CSR,tendon-bone syndrome differentiation in traditional Chinese medicine often faces the issues of conceptual confusion and non-standard syndrome differentiation.Based on the traditional tendon-bone syndrome differentiation and by integrating modern anatomical insights,Professor LIN Ding-Kun,an esteemed scholar of Traditional Chinese Medicine,proposed a classification system for the cervical spine that includes the categories of tendons,joints,bones and marrow.This paper explored the thoughts of Professor LIN for the tendon-bone syndrome differentiation of CSR,summarized the targets of manual therapy,and proposed the four kinds of pathological changes such as tendon overstrain,joint dislocation,bone lesion,and marrow injury,as well as the four techniques of traditional Chinese medicine manipulations,i.e.relaxation of tendons,reduction of joints,protection of marrow,and treatment of bones.The aim is to improve the syndrome-differentiation and treatment for CSR with orthopedic and traumatologic manipulations,and to provide reference for clinical practice.
5.Research progress of fluorescent probes in uric acid detection
Di-Di XING ; Ruo-Jin LIU ; Jia-Yu QI ; Ning MA ; Ya-Kun JI ; Jia-Xin ZHOU ; Yu-Shan XING ; Xiao-Lan ZHEN
Chinese Medical Equipment Journal 2024;45(6):93-104
The advantages of fluorescence detection of uric acid were introduced compared to the traditional detection methods.The preparation process,detection principle and performance of organic,inorganic and organic-inorganic hybrid fluorescent probes were reviewed.The advantages and disadvantages of kinds of fluorescent probes were analyzed when used for uric acid detection,and the futural directions were pointed out for related research.[Chinese Medical Equipment Journal,2024,45(6):93-104]
6.The international pharmaceutical trade policies of the BRICS countries and its implications for China
Zuo-Kun LIU ; Wang-Yao MA ; Yi-Wu GU ; Yu-Yang ZHANG ; Ji-Yan MA ; Ming-Fan PANG ; Yi-Nuo SUN ; Yang-Mu HUANG
Chinese Journal of Health Policy 2024;17(4):65-71
This study adopted the policy text analysis method,review the historical background of the enactment,aimed to comparatively analyze the international pharmaceutical trade policies of the BRICS countries.The main objectives of the BRICS countries'international pharmaceutical trade policies included ensuring stable and accessible drug supply,expanding exports of domestic products and creating a favorable political environment.For these purposes,Brazil,Russia,and South Africa all ensure drug supply through substantial imports.However,they have also taken measures such as compulsory patent licensing and promoting localization of production by foreign companies to reduce import dependence.India,on the other hand,protects its domestic industry by resisting drug imports to ensure drug supply while simultaneously promoting the export of pharmaceutical products.China continually optimizes approval and data monitoring procedures to align with international standards,creating a favorable trade environment and expanding exports.China should further refine its international pharmaceutical trade policies while ensuring the autonomy of domestic drug research and supply,fostering stronger collaboration within BRICS nations and promoting global access to public healthcare products.
7.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
10.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.

Result Analysis
Print
Save
E-mail