1.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
2.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
3.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
4.Vidian Nerve Schwannoma Extending Into the Foramen Rotundum in a Female Patient: A Case Report
Je Ho BANG ; Se Hyeon JIN ; Su Jin KIM ; Kun Hee LEE
Journal of Rhinology 2024;31(3):184-188
Schwannomas are benign tumors that can develop in any part of a nerve containing Schwann cells. Skull base schwannomas are rare, representing approximately 4% of extracranial schwannomas. Among these, vidian nerve schwannomas are particularly uncommon, with only a few documented cases. In this report, we describe the case of a 58-year-old female patient who presented with an incidental finding of a skull base mass. The patient’s only symptoms were intermittent headaches and dry eyes. No mass was detected during the physical examination. Radiographic evaluation revealed a neoplasm within the vidian canal, and the lesion’s characteristics suggested a schwannoma. The patient underwent endoscopic resection, and subsequent histopathological analysis confirmed the diagnosis of schwannoma. Follow-up imaging and physical examination showed no evidence of recurrence. This case report highlights a schwannoma located in the vidian canal and extending into the foramen rotundum, which was successfully managed with endoscopic surgery.
5.Development of a blocking ELISA for detection of Japanese encephalitis virus antibodies in pig and horse sera
Dong-Kun YANG ; Eun-Ju KIM ; Sang Ho JANG ; Hye Jung LEE ; Bitna KIM ; Jin A LEE ; Ju-Yeon LEE ; Yun Sang CHO
Korean Journal of Veterinary Research 2024;64(3):e26-
Japanese encephalitis virus (JEV) is a mosquito-borne virus that can infect pigs, horses, and other mammals, including humans. Sero-epidemiological investigations of JEV have been performed using hemagglutination inhibition (HI), virus neutralization (VN) tests and enzyme-linked immunosorbent assay (ELISA). A need exists for a new ELISA that can detect JEV antibodies in the sera of several animal species. We aimed to develop a blocking ELISA (B-ELISA) for detecting JEV antibodies in pig and horse serum samples. JEV antibodies in 218 pig and 315 horse serum samples were measured using HI and VN tests. The purified KV1899-306 strain was used as an antigen for B-ELISA. The purified antibody (7A13) was conjugated with horseradish peroxidase and used as a detector antibody. The sera of pigs and horses to measure antibody against JEV were subjected to B-ELISA and analyzed. The B-ELISA had a diagnostic sensitivity of 94.6% to 100%, a specificity of 91.2 to 100%, and an accuracy of 94.9 to 98.6% compared with those of the HI and VN tests in pig and horse sera. The B-ELISA had a higher correlation with pig sera (r = 0.89 and 0.90 for VN and HI) than with horse sera (r = 0.75 and to 0.79). The new B-ELISA could be useful in the sero-surveillance of JEV in pig and horse sera and replace indirect ELISA.
6.Cohort profile: Multicenter Networks for Ideal Outcomes of Rare Pediatric Endocrine and Metabolic Diseases in Korea (OUTSPREAD study)
Yun Jeong LEE ; Chong Kun CHEON ; Junghwan SUH ; Jung-Eun MOON ; Moon Bae AHN ; Seong Hwan CHANG ; Jieun LEE ; Jin Ho CHOI ; Minsun KIM ; Han Hyuk LIM ; Jaehyun KIM ; Shin-Hye KIM ; Hae Sang LEE ; Yena LEE ; Eungu KANG ; Se Young KIM ; Yong Hee HONG ; Seung YANG ; Heon-Seok HAN ; Sochung CHUNG ; Won Kyoung CHO ; Eun Young KIM ; Jin Kyung KIM ; Kye Shik SHIM ; Eun-Gyong YOO ; Hae Soon KIM ; Aram YANG ; Sejin KIM ; Hyo-Kyoung NAM ; Sung Yoon CHO ; Young Ah LEE
Annals of Pediatric Endocrinology & Metabolism 2024;29(6):349-355
Rare endocrine diseases are complex conditions that require lifelong specialized care due to their chronic nature and associated long-term complications. In Korea, a lack of nationwide data on clinical practice and outcomes has limited progress in patient care. Therefore, the Multicenter Networks for Ideal Outcomes of Pediatric Rare Endocrine and Metabolic Disease (OUTSPREAD) study was initiated. This study involves 30 centers across Korea. The study aims to improve the long-term prognosis of Korean patients with rare endocrine diseases by collecting comprehensive clinical data, biospecimens, and patient-reported outcomes to identify complications and unmet needs in patient care. Patients with childhood-onset pituitary, adrenal, or gonadal disorders, such as craniopharyngioma, congenital adrenal hyperplasia (CAH), and Turner syndrome were prioritized. The planned enrollment is 1,300 patients during the first study phase (2022–2024). Clinical, biochemical, and imaging data from diagnosis, treatment, and follow-up during 1980–2023 were retrospectively reviewed. For patients who agreed to participate in the prospective cohort, clinical data and biospecimens will be prospectively collected to discover ideal biomarkers that predict the effectiveness of disease control measures and prognosis. Patient-reported outcomes, including quality of life and depression scales, will be evaluated to assess psychosocial outcomes. Additionally, a substudy on CAH patients will develop a steroid hormone profiling method using liquid chromatography-tandem mass spectrometry to improve diagnosis and monitoring of treatment outcomes. This study will address unmet clinical needs by discovering ideal biomarkers, introducing evidence-based treatment guidelines, and ultimately improving long-term outcomes in the areas of rare endocrine and metabolic diseases.
7.Development of a blocking ELISA for detection of Japanese encephalitis virus antibodies in pig and horse sera
Dong-Kun YANG ; Eun-Ju KIM ; Sang Ho JANG ; Hye Jung LEE ; Bitna KIM ; Jin A LEE ; Ju-Yeon LEE ; Yun Sang CHO
Korean Journal of Veterinary Research 2024;64(3):e26-
Japanese encephalitis virus (JEV) is a mosquito-borne virus that can infect pigs, horses, and other mammals, including humans. Sero-epidemiological investigations of JEV have been performed using hemagglutination inhibition (HI), virus neutralization (VN) tests and enzyme-linked immunosorbent assay (ELISA). A need exists for a new ELISA that can detect JEV antibodies in the sera of several animal species. We aimed to develop a blocking ELISA (B-ELISA) for detecting JEV antibodies in pig and horse serum samples. JEV antibodies in 218 pig and 315 horse serum samples were measured using HI and VN tests. The purified KV1899-306 strain was used as an antigen for B-ELISA. The purified antibody (7A13) was conjugated with horseradish peroxidase and used as a detector antibody. The sera of pigs and horses to measure antibody against JEV were subjected to B-ELISA and analyzed. The B-ELISA had a diagnostic sensitivity of 94.6% to 100%, a specificity of 91.2 to 100%, and an accuracy of 94.9 to 98.6% compared with those of the HI and VN tests in pig and horse sera. The B-ELISA had a higher correlation with pig sera (r = 0.89 and 0.90 for VN and HI) than with horse sera (r = 0.75 and to 0.79). The new B-ELISA could be useful in the sero-surveillance of JEV in pig and horse sera and replace indirect ELISA.
8.Development of a blocking ELISA for detection of Japanese encephalitis virus antibodies in pig and horse sera
Dong-Kun YANG ; Eun-Ju KIM ; Sang Ho JANG ; Hye Jung LEE ; Bitna KIM ; Jin A LEE ; Ju-Yeon LEE ; Yun Sang CHO
Korean Journal of Veterinary Research 2024;64(3):e26-
Japanese encephalitis virus (JEV) is a mosquito-borne virus that can infect pigs, horses, and other mammals, including humans. Sero-epidemiological investigations of JEV have been performed using hemagglutination inhibition (HI), virus neutralization (VN) tests and enzyme-linked immunosorbent assay (ELISA). A need exists for a new ELISA that can detect JEV antibodies in the sera of several animal species. We aimed to develop a blocking ELISA (B-ELISA) for detecting JEV antibodies in pig and horse serum samples. JEV antibodies in 218 pig and 315 horse serum samples were measured using HI and VN tests. The purified KV1899-306 strain was used as an antigen for B-ELISA. The purified antibody (7A13) was conjugated with horseradish peroxidase and used as a detector antibody. The sera of pigs and horses to measure antibody against JEV were subjected to B-ELISA and analyzed. The B-ELISA had a diagnostic sensitivity of 94.6% to 100%, a specificity of 91.2 to 100%, and an accuracy of 94.9 to 98.6% compared with those of the HI and VN tests in pig and horse sera. The B-ELISA had a higher correlation with pig sera (r = 0.89 and 0.90 for VN and HI) than with horse sera (r = 0.75 and to 0.79). The new B-ELISA could be useful in the sero-surveillance of JEV in pig and horse sera and replace indirect ELISA.
9.Development of a Rabbit Iliac Arterial Stenosis Model Using a Controlled Cholesterol Diet and Pullover Balloon Injury
Hooney D. MIN ; Chong-ho LEE ; Jae Hwan LEE ; Kun Yung KIM ; Chang Jin YOON ; Minuk KIM
Journal of the Korean Society of Radiology 2024;85(2):372-380
Purpose:
This study aimed to develop a rabbit iliac stenosis model and evaluate the effects of different mechanical injury techniques on the degree of arterial stenosis.
Materials and Methods:
Eighteen rabbits were divided into three groups: cholesterol-fed with pullover balloon injury (group A; n = 6), cholesterol-fed with localized balloon dilatation (group B; n = 6), and chow-diet with pullover balloon injury (group C; n = 6). After baseline angiography, the left iliac arteries of all rabbits were injured with a 3 × 10 mm noncompliant balloon using either a wide pullover technique (groups A and C) or a localized balloon dilatation technique (group B). A nine-week follow-up angiography was performed, and the angiographic late lumen loss and percentage of stenosis were compared.
Results:
Group A exhibited the most severe late lumen loss (A vs. B, 0.67 ± 0.13 vs. 0.04 ± 0.13 mm, p < 0.0001; A vs. C, 0.67 ± 0.13 vs. 0.26 ± 0.29 mm, p < 0.05; stenosis percentage 32.02% ± 6.54%). In contrast, group B showed a minimal percentage of stenosis (1.75% ± 6.55%).
Conclusion
Pullover-balloon injury can lead to significant iliac artery stenosis in rabbits with controlled hypercholesterolemia. This model may be useful for elucidating the pathogenesis of atherosclerosis and for evaluating the efficacy of novel therapeutic interventions.
10.Identifying infrequent genetic changes in monozygotic twins afflicted with hypospadias via targeted panel sequencing
Ja Hye KIM ; Kun Suk KIM ; Jae Hyeon HAN ; Dongsu KIM ; Chan Hoon KWAK ; Jin-Ho CHOI ; Sang Hoon SONG
Investigative and Clinical Urology 2024;65(5):487-493
Purpose:
We aimed to identify the genetic causes of hypospadias in children using targeted gene panel sequencing for disorders of sex development (DSD).
Materials and Methods:
This study included 18 twin boys with hypospadias: seven and two pairs were monozygotic and dizygotic twins, respectively, and six were discordant and three were concordant twins. Targeted gene panel sequencing for 67 known DSD genes was performed. Sequence variants were classified into five different categories, pathogenic, likely pathogenic, variants of uncertain significance, likely benign, and benign, following the American College of Medical Genetics and Genomics Standards and Guidelines.
Results:
The mean gestational age and birth weight were 35.3±2.0 weeks and 1.96±0.61 kg, respectively, with seven patients being small for gestational age. Hypospadias was present in 12 patients, with posterior type in 33.3% and anterior type in 66.7%.In three families with twins, both siblings had hypospadias. In addition, cryptorchidism was observed in one subject. Surgical correction of hypospadias was performed at a mean age of 22.1 months. Molecular analysis identified 12 different genetic variants, including two pathogenic mutations in the AMH (p.E389*) and SRD5A2 (p.R246Q) genes, found in subjects with hypospadias, respectively. However, only heterozygous mutations were detected.
Conclusions
This study did not identify a definitive genetic component contributing to the development of hypospadias; however, the findings suggest that intrauterine growth retardation may play a significant role.

Result Analysis
Print
Save
E-mail