1.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
2.Establishment of an In Vitro Embryo-Endometrium Model Using Alginate-Embedded Mouse Embryos and Human Embryoid Body
Yoon Young KIM ; Yong Jin KIM ; Jung Woo KIM ; Jiyeon KIM ; Sung Woo KIM ; Seung-Yup KU
Tissue Engineering and Regenerative Medicine 2025;22(1):77-89
BACKGROUND:
Embryo-endometrium cross-talk is one of the critical processes for implantation, and unsuccessful cross-talk leads to infertility. We established an endometrium-embryo (or embryoid bodies, hEBs) in vitro model in 2D and 3D conditions and assessed its potential through the fusion of embryos and the expression of specific markers.
METHODS:
C57BL/6 mouse embryos and human embryoid body (hEB) derived from embryonic stem cells were prepared as embryo models. Mouse endometrium (EM) and human endometrium cell line, HEC-1-A, were prepared, and 2D or 3D EMs were generated. The viability of the 3D endometrium was analyzed, and the optimal ratio of the gelation was revealed. The invasion of the embryos or hEBs was examined by immunostaining and 3D image rendering.
RESULTS:
The embryos and the alternative hEBs were effectively fused into 2D or 3D vitro EM models in both mouse and human models. The fused embryos and hEBs exhibited migration and further development. Notably, the established in vitro model expressed Oct4 and E-Cadherin, markers for early embryonic development; human CG Receptor and Progesterone Receptor, critical for implantation and pregnancy maintenance; and TSH Receptor, Epiregulin, and Prolactin, indicators of endometrial receptivity and embryo implantation.
CONCLUSION
This study marks a significant advancement in the field, as we have successfully established a novel in vitro model for studying embryo-endometrium cross-talk. This model, a crucial tool for understanding fertility and the causes of miscarriage due to failed implantation, provides a unique platform for investigating the complex processes of successful implantation and pregnancy, underscoring its potential impact on reproductive health.
3.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
4.Establishment of an In Vitro Embryo-Endometrium Model Using Alginate-Embedded Mouse Embryos and Human Embryoid Body
Yoon Young KIM ; Yong Jin KIM ; Jung Woo KIM ; Jiyeon KIM ; Sung Woo KIM ; Seung-Yup KU
Tissue Engineering and Regenerative Medicine 2025;22(1):77-89
BACKGROUND:
Embryo-endometrium cross-talk is one of the critical processes for implantation, and unsuccessful cross-talk leads to infertility. We established an endometrium-embryo (or embryoid bodies, hEBs) in vitro model in 2D and 3D conditions and assessed its potential through the fusion of embryos and the expression of specific markers.
METHODS:
C57BL/6 mouse embryos and human embryoid body (hEB) derived from embryonic stem cells were prepared as embryo models. Mouse endometrium (EM) and human endometrium cell line, HEC-1-A, were prepared, and 2D or 3D EMs were generated. The viability of the 3D endometrium was analyzed, and the optimal ratio of the gelation was revealed. The invasion of the embryos or hEBs was examined by immunostaining and 3D image rendering.
RESULTS:
The embryos and the alternative hEBs were effectively fused into 2D or 3D vitro EM models in both mouse and human models. The fused embryos and hEBs exhibited migration and further development. Notably, the established in vitro model expressed Oct4 and E-Cadherin, markers for early embryonic development; human CG Receptor and Progesterone Receptor, critical for implantation and pregnancy maintenance; and TSH Receptor, Epiregulin, and Prolactin, indicators of endometrial receptivity and embryo implantation.
CONCLUSION
This study marks a significant advancement in the field, as we have successfully established a novel in vitro model for studying embryo-endometrium cross-talk. This model, a crucial tool for understanding fertility and the causes of miscarriage due to failed implantation, provides a unique platform for investigating the complex processes of successful implantation and pregnancy, underscoring its potential impact on reproductive health.
5.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
6.Establishment of an In Vitro Embryo-Endometrium Model Using Alginate-Embedded Mouse Embryos and Human Embryoid Body
Yoon Young KIM ; Yong Jin KIM ; Jung Woo KIM ; Jiyeon KIM ; Sung Woo KIM ; Seung-Yup KU
Tissue Engineering and Regenerative Medicine 2025;22(1):77-89
BACKGROUND:
Embryo-endometrium cross-talk is one of the critical processes for implantation, and unsuccessful cross-talk leads to infertility. We established an endometrium-embryo (or embryoid bodies, hEBs) in vitro model in 2D and 3D conditions and assessed its potential through the fusion of embryos and the expression of specific markers.
METHODS:
C57BL/6 mouse embryos and human embryoid body (hEB) derived from embryonic stem cells were prepared as embryo models. Mouse endometrium (EM) and human endometrium cell line, HEC-1-A, were prepared, and 2D or 3D EMs were generated. The viability of the 3D endometrium was analyzed, and the optimal ratio of the gelation was revealed. The invasion of the embryos or hEBs was examined by immunostaining and 3D image rendering.
RESULTS:
The embryos and the alternative hEBs were effectively fused into 2D or 3D vitro EM models in both mouse and human models. The fused embryos and hEBs exhibited migration and further development. Notably, the established in vitro model expressed Oct4 and E-Cadherin, markers for early embryonic development; human CG Receptor and Progesterone Receptor, critical for implantation and pregnancy maintenance; and TSH Receptor, Epiregulin, and Prolactin, indicators of endometrial receptivity and embryo implantation.
CONCLUSION
This study marks a significant advancement in the field, as we have successfully established a novel in vitro model for studying embryo-endometrium cross-talk. This model, a crucial tool for understanding fertility and the causes of miscarriage due to failed implantation, provides a unique platform for investigating the complex processes of successful implantation and pregnancy, underscoring its potential impact on reproductive health.
7.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
8.Establishment of an In Vitro Embryo-Endometrium Model Using Alginate-Embedded Mouse Embryos and Human Embryoid Body
Yoon Young KIM ; Yong Jin KIM ; Jung Woo KIM ; Jiyeon KIM ; Sung Woo KIM ; Seung-Yup KU
Tissue Engineering and Regenerative Medicine 2025;22(1):77-89
BACKGROUND:
Embryo-endometrium cross-talk is one of the critical processes for implantation, and unsuccessful cross-talk leads to infertility. We established an endometrium-embryo (or embryoid bodies, hEBs) in vitro model in 2D and 3D conditions and assessed its potential through the fusion of embryos and the expression of specific markers.
METHODS:
C57BL/6 mouse embryos and human embryoid body (hEB) derived from embryonic stem cells were prepared as embryo models. Mouse endometrium (EM) and human endometrium cell line, HEC-1-A, were prepared, and 2D or 3D EMs were generated. The viability of the 3D endometrium was analyzed, and the optimal ratio of the gelation was revealed. The invasion of the embryos or hEBs was examined by immunostaining and 3D image rendering.
RESULTS:
The embryos and the alternative hEBs were effectively fused into 2D or 3D vitro EM models in both mouse and human models. The fused embryos and hEBs exhibited migration and further development. Notably, the established in vitro model expressed Oct4 and E-Cadherin, markers for early embryonic development; human CG Receptor and Progesterone Receptor, critical for implantation and pregnancy maintenance; and TSH Receptor, Epiregulin, and Prolactin, indicators of endometrial receptivity and embryo implantation.
CONCLUSION
This study marks a significant advancement in the field, as we have successfully established a novel in vitro model for studying embryo-endometrium cross-talk. This model, a crucial tool for understanding fertility and the causes of miscarriage due to failed implantation, provides a unique platform for investigating the complex processes of successful implantation and pregnancy, underscoring its potential impact on reproductive health.
9.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
10.Establishment of an In Vitro Embryo-Endometrium Model Using Alginate-Embedded Mouse Embryos and Human Embryoid Body
Yoon Young KIM ; Yong Jin KIM ; Jung Woo KIM ; Jiyeon KIM ; Sung Woo KIM ; Seung-Yup KU
Tissue Engineering and Regenerative Medicine 2025;22(1):77-89
BACKGROUND:
Embryo-endometrium cross-talk is one of the critical processes for implantation, and unsuccessful cross-talk leads to infertility. We established an endometrium-embryo (or embryoid bodies, hEBs) in vitro model in 2D and 3D conditions and assessed its potential through the fusion of embryos and the expression of specific markers.
METHODS:
C57BL/6 mouse embryos and human embryoid body (hEB) derived from embryonic stem cells were prepared as embryo models. Mouse endometrium (EM) and human endometrium cell line, HEC-1-A, were prepared, and 2D or 3D EMs were generated. The viability of the 3D endometrium was analyzed, and the optimal ratio of the gelation was revealed. The invasion of the embryos or hEBs was examined by immunostaining and 3D image rendering.
RESULTS:
The embryos and the alternative hEBs were effectively fused into 2D or 3D vitro EM models in both mouse and human models. The fused embryos and hEBs exhibited migration and further development. Notably, the established in vitro model expressed Oct4 and E-Cadherin, markers for early embryonic development; human CG Receptor and Progesterone Receptor, critical for implantation and pregnancy maintenance; and TSH Receptor, Epiregulin, and Prolactin, indicators of endometrial receptivity and embryo implantation.
CONCLUSION
This study marks a significant advancement in the field, as we have successfully established a novel in vitro model for studying embryo-endometrium cross-talk. This model, a crucial tool for understanding fertility and the causes of miscarriage due to failed implantation, provides a unique platform for investigating the complex processes of successful implantation and pregnancy, underscoring its potential impact on reproductive health.

Result Analysis
Print
Save
E-mail