1.Effects of clear aligner edentulous space design on distal canine movement: An iterative finite element analysis in cases involving extraction
Seung Eun BAEK ; Kiyean KIM ; Youn-Kyung CHOI ; Sung-Hun KIM ; Seong-Sik KIM ; Ki Beom KIM ; Yong-Il KIM
The Korean Journal of Orthodontics 2025;55(3):193-201
Objective:
Using finite element method (FEM) analysis of a clear aligner (CA), this study aimed to investigate the effects of varying the edentulous space on canine distal bodily movement during space closure following maxillary first premolar extraction.
Methods:
FEM analysis was used to simulate distal canine bodily movement following maxillary first premolar extraction using CAs. Four CA designs for edentulous spaces were compared: no-pontic, full-pontic, halfpontic, and beam. Three-dimensional models of the tooth components and CA were created. The target was set at a 0.25-mm distal canine movement. Long-term tooth movement was simulated using an iterative calculation method.
Results:
All the groups initially showed crown displacement, distal tipping, and distal rotation.Over time, the movement patterns differed in relation to the design. The no-pontic design exhibited the greatest displacement and tipping. The beam design exhibited the largest initial displacement but showed the lowest displacement and tipping thereafter. Full- and half-pontic designs yielded intermediate results. Significant force reduction was observed immediately after CA application, and was followed by a gradual decrease. The mean tooth-movement achievement rate was approximately 76.7%.
Conclusions
The edentulous space design of the CA substantially affected tooth-movement behavior. An iterative simulation is necessary to evaluate longterm tooth-movement patterns. The beam design demonstrated optimal suitability for bodily movement with minimal tipping. For optimal results, additional setup or overcorrection may be necessary.
2.Effects of clear aligner edentulous space design on distal canine movement: An iterative finite element analysis in cases involving extraction
Seung Eun BAEK ; Kiyean KIM ; Youn-Kyung CHOI ; Sung-Hun KIM ; Seong-Sik KIM ; Ki Beom KIM ; Yong-Il KIM
The Korean Journal of Orthodontics 2025;55(3):193-201
Objective:
Using finite element method (FEM) analysis of a clear aligner (CA), this study aimed to investigate the effects of varying the edentulous space on canine distal bodily movement during space closure following maxillary first premolar extraction.
Methods:
FEM analysis was used to simulate distal canine bodily movement following maxillary first premolar extraction using CAs. Four CA designs for edentulous spaces were compared: no-pontic, full-pontic, halfpontic, and beam. Three-dimensional models of the tooth components and CA were created. The target was set at a 0.25-mm distal canine movement. Long-term tooth movement was simulated using an iterative calculation method.
Results:
All the groups initially showed crown displacement, distal tipping, and distal rotation.Over time, the movement patterns differed in relation to the design. The no-pontic design exhibited the greatest displacement and tipping. The beam design exhibited the largest initial displacement but showed the lowest displacement and tipping thereafter. Full- and half-pontic designs yielded intermediate results. Significant force reduction was observed immediately after CA application, and was followed by a gradual decrease. The mean tooth-movement achievement rate was approximately 76.7%.
Conclusions
The edentulous space design of the CA substantially affected tooth-movement behavior. An iterative simulation is necessary to evaluate longterm tooth-movement patterns. The beam design demonstrated optimal suitability for bodily movement with minimal tipping. For optimal results, additional setup or overcorrection may be necessary.
3.Effects of clear aligner edentulous space design on distal canine movement: An iterative finite element analysis in cases involving extraction
Seung Eun BAEK ; Kiyean KIM ; Youn-Kyung CHOI ; Sung-Hun KIM ; Seong-Sik KIM ; Ki Beom KIM ; Yong-Il KIM
The Korean Journal of Orthodontics 2025;55(3):193-201
Objective:
Using finite element method (FEM) analysis of a clear aligner (CA), this study aimed to investigate the effects of varying the edentulous space on canine distal bodily movement during space closure following maxillary first premolar extraction.
Methods:
FEM analysis was used to simulate distal canine bodily movement following maxillary first premolar extraction using CAs. Four CA designs for edentulous spaces were compared: no-pontic, full-pontic, halfpontic, and beam. Three-dimensional models of the tooth components and CA were created. The target was set at a 0.25-mm distal canine movement. Long-term tooth movement was simulated using an iterative calculation method.
Results:
All the groups initially showed crown displacement, distal tipping, and distal rotation.Over time, the movement patterns differed in relation to the design. The no-pontic design exhibited the greatest displacement and tipping. The beam design exhibited the largest initial displacement but showed the lowest displacement and tipping thereafter. Full- and half-pontic designs yielded intermediate results. Significant force reduction was observed immediately after CA application, and was followed by a gradual decrease. The mean tooth-movement achievement rate was approximately 76.7%.
Conclusions
The edentulous space design of the CA substantially affected tooth-movement behavior. An iterative simulation is necessary to evaluate longterm tooth-movement patterns. The beam design demonstrated optimal suitability for bodily movement with minimal tipping. For optimal results, additional setup or overcorrection may be necessary.
4.Effects of clear aligner edentulous space design on distal canine movement: An iterative finite element analysis in cases involving extraction
Seung Eun BAEK ; Kiyean KIM ; Youn-Kyung CHOI ; Sung-Hun KIM ; Seong-Sik KIM ; Ki Beom KIM ; Yong-Il KIM
The Korean Journal of Orthodontics 2025;55(3):193-201
Objective:
Using finite element method (FEM) analysis of a clear aligner (CA), this study aimed to investigate the effects of varying the edentulous space on canine distal bodily movement during space closure following maxillary first premolar extraction.
Methods:
FEM analysis was used to simulate distal canine bodily movement following maxillary first premolar extraction using CAs. Four CA designs for edentulous spaces were compared: no-pontic, full-pontic, halfpontic, and beam. Three-dimensional models of the tooth components and CA were created. The target was set at a 0.25-mm distal canine movement. Long-term tooth movement was simulated using an iterative calculation method.
Results:
All the groups initially showed crown displacement, distal tipping, and distal rotation.Over time, the movement patterns differed in relation to the design. The no-pontic design exhibited the greatest displacement and tipping. The beam design exhibited the largest initial displacement but showed the lowest displacement and tipping thereafter. Full- and half-pontic designs yielded intermediate results. Significant force reduction was observed immediately after CA application, and was followed by a gradual decrease. The mean tooth-movement achievement rate was approximately 76.7%.
Conclusions
The edentulous space design of the CA substantially affected tooth-movement behavior. An iterative simulation is necessary to evaluate longterm tooth-movement patterns. The beam design demonstrated optimal suitability for bodily movement with minimal tipping. For optimal results, additional setup or overcorrection may be necessary.
5.Effects of clear aligner edentulous space design on distal canine movement: An iterative finite element analysis in cases involving extraction
Seung Eun BAEK ; Kiyean KIM ; Youn-Kyung CHOI ; Sung-Hun KIM ; Seong-Sik KIM ; Ki Beom KIM ; Yong-Il KIM
The Korean Journal of Orthodontics 2025;55(3):193-201
Objective:
Using finite element method (FEM) analysis of a clear aligner (CA), this study aimed to investigate the effects of varying the edentulous space on canine distal bodily movement during space closure following maxillary first premolar extraction.
Methods:
FEM analysis was used to simulate distal canine bodily movement following maxillary first premolar extraction using CAs. Four CA designs for edentulous spaces were compared: no-pontic, full-pontic, halfpontic, and beam. Three-dimensional models of the tooth components and CA were created. The target was set at a 0.25-mm distal canine movement. Long-term tooth movement was simulated using an iterative calculation method.
Results:
All the groups initially showed crown displacement, distal tipping, and distal rotation.Over time, the movement patterns differed in relation to the design. The no-pontic design exhibited the greatest displacement and tipping. The beam design exhibited the largest initial displacement but showed the lowest displacement and tipping thereafter. Full- and half-pontic designs yielded intermediate results. Significant force reduction was observed immediately after CA application, and was followed by a gradual decrease. The mean tooth-movement achievement rate was approximately 76.7%.
Conclusions
The edentulous space design of the CA substantially affected tooth-movement behavior. An iterative simulation is necessary to evaluate longterm tooth-movement patterns. The beam design demonstrated optimal suitability for bodily movement with minimal tipping. For optimal results, additional setup or overcorrection may be necessary.

Result Analysis
Print
Save
E-mail