1.NF-κB Inhibitor Parthenolide Promotes Renal Tubules Albumin Uptake in Type 2 Diabetic Nephropathy.
Qiu Fa HAO ; Bao Bao WANG ; Wei ZHANG ; Wei QIU ; Qian Ling LIU ; Xue Mei LI
Chinese Medical Sciences Journal 2020;35(1):31-42
Objective Injured tubular reabsorption is highlighted as one of the causes of increased albuminuria in the early stage of diabetic nephropathy; however, the underlying mechanism has not been fully elucidated. In this study, we aimed to explore whether reducing inflammation and remodeling the insulin signaling pathway could improve albumin uptake of renal tubules. Methods 8-week-old male db/db mice (n=8), a type 2 diabetic nephropathy model, administered with nuclear factor kappa-B (NF-κB) inhibitor parthenolide (PTN, 1 mg/kg) intraperitoneally every other day for 8 weeks, were as the treatment group. Meanwhile, the age-matched male db/m mice (n=5) and db/db mice (n=8) were treated with saline as the control group and type 2 diabetic nephropathy group. When the mice were sacrificed, blood and urine were collected to examine homeostasis model assessment of insulin resistance (HOMA-IR) and urine albumin creatinine ratio, and kidney samples were used to analyze histopathologic changes with periodic acid-Schiff (PAS) staining, NF-κB p65, phosphorylation of AKT (p-AKT), amnionless and cubilin expressions with immunohistochemistry as well as western blot, and the albumin uptake of renal tubules by using immunofluorescence. In addition, HKC cells were divided into the insulin group treated with insulin alone, the TNF-α group treated with insulin and tumor necrosis factor (TNF-α), and the TNF-α+PTN group exposed to PTN, insulin and TNF-α. The levels of albumin uptake and expression levels of NF-κB p65, p-IRS-1/IRS-1, p-AKT/AKT, amnionless and cubilin in HKC cells were measured. Results Compared with the db/db group, the db/db+PTN group demonstrated decreased levels of HOMA-IR (36.83±14.09 vs. 31.07±28.05) and urine albumin creatinine ratio (190.3±7.3 vs. 143.0±97.6 mg/mmol); however, the differences were not statistically significant (P>0.05). Periodic acid-Schiff staining showed PTN could alleviate the glomerular hypertrophy and reduce the matrix in mesangial areas of db/db mice. The renal expression of NF-κB p65 was increased and p-AKT (s473) decreased in the db/db group compared with the db/m group (P<0.05). PTN significantly reduced the renal expression of NF-κB p65 and ameliorated the decline of p-AKT (s473) compared with the db/db group (P<0.05). Compared with the db/m group, the expression of amnionless and cubilin decreased and albumin uptake in tubules were reduced in the db/db group (P<0.05), and PTN could significantly increase the expression of cubilin (P<0.05), and improve albumin uptake in tubules. Insulin promoted albumin uptake and the expression of amnionless and cubilin in HKC cells (P<0.05). TNF-α stimulated the expression of NF-κB p65, increased p-IRS-1 (s307) and reduced p-AKT (s473) in HKC cells (P<0.05). In the TNF-α+PTN group, the expression of NF-κB p65 declined and p-IRS-1 (s307) and p-AKT (s473) were restored, compared with the TNF-α group (P<0.05). The expression of amnionless and cubilin decreased in the TNF-α group (P<0.05), and PTN could significantly increase the expression of cubilin (P<0.05). Conclusions Inflammation caused damage to insulin signaling, which reduced amnionless-cubilin expression and albumin uptake. PTN could reduce inflammation and remodel the impaired insulin signaling pathway, which promoted the expression of cubilin and albumin uptake. Our study can shed light on the role of inflammation in the reduction of albumin uptake of renal tubules in type 2 diabetic nephropathy.
Albumins/pharmacokinetics*
;
Albuminuria/urine*
;
Animals
;
Anti-Inflammatory Agents, Non-Steroidal/pharmacology*
;
Cell Line
;
Creatinine/urine*
;
Diabetes Mellitus, Type 2/complications*
;
Diabetic Nephropathies/metabolism*
;
Humans
;
Insulin Resistance
;
Kidney Tubules, Proximal/metabolism*
;
Male
;
Mice
;
NF-kappa B/metabolism*
;
Receptors, Cell Surface/metabolism*
;
Sesquiterpenes/pharmacology*
2.High levels of glucose induce epithelial-mesenchymal transition in renal proximal tubular cells through PERK-eIF2α pathway.
Yan BAO ; Ying AO ; Bo YI ; Jo BATUBAYIER
Chinese Medical Journal 2019;132(7):868-872
Animals
;
Cell Line
;
Diabetic Nephropathies
;
metabolism
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Eukaryotic Initiation Factor-2
;
metabolism
;
Glucose
;
pharmacology
;
Humans
;
Kidney
;
drug effects
;
metabolism
;
pathology
;
Kidney Tubules, Proximal
;
drug effects
;
metabolism
;
Rats
;
Signal Transduction
;
drug effects
3.Preventive effect of Shenkang injection against high glucose-induced senescence of renal tubular cells.
Biqiong FU ; Jie YANG ; Jia CHEN ; Lirong LIN ; Kehong CHEN ; Weiwei ZHANG ; Jianguo ZHANG ; Yani HE
Frontiers of Medicine 2019;13(2):267-276
Shenkang injection (SKI) is a classic prescription composed of Radix Astragali, rhubarb, Astragalus, Safflower, and Salvia. This treatment was approved by the State Food and Drug Administration of China in 1999 for treatment of chronic kidney diseases based on good efficacy and safety. This study aimed to investigate the protective effect of SKI against high glucose (HG)-induced renal tubular cell senescence and its underlying mechanism. Primary renal proximal tubule epithelial cells were cultured in (1) control medium (control group), medium containing 5 mmol/L glucose; (2) mannitol medium (mannitol group), medium containing 5 mmol/L glucose, and 25 mmol/L mannitol; (3) HG medium (HG group) containing 30 mmol/L glucose; (4) SKI treatment at high (200 mg/L), medium (100 mg/L), or low (50 mg/L) concentration in HG medium (HG + SKI group); or (5) 200 mg/L SKI treatment in control medium (control + SKI group) for 72 h. HG-induced senescent cells showed the emergence of senescence associated heterochromatin foci, up-regulation of P16 and cyclin D1, increased senescence-associated β-galactosidase activity, and elevated expression of membrane decoy receptor 2. SKI treatment potently prevented these changes in a dose-independent manner. SKI treatment prevented HG-induced up-regulation of pro-senescence molecule mammalian target of rapamycin and p66Shc and down-regulation of anti-senescence molecules klotho, sirt1, and peroxisome proliferator-activated receptor-g in renal tubular epithelial cells. SKI may be a novel strategy for protecting against HG-induced renal tubular cell senescence in treatment of diabetic nephropathy.
Animals
;
Cells, Cultured
;
Cellular Senescence
;
drug effects
;
Cyclin D1
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p16
;
metabolism
;
Diabetic Nephropathies
;
drug therapy
;
Drugs, Chinese Herbal
;
pharmacology
;
Epithelial Cells
;
drug effects
;
metabolism
;
Glucose
;
Kidney Tubules, Proximal
;
physiopathology
;
Male
;
Mice
;
Mice, Inbred C57BL
4.LC/MS guided approach to discovering nephroprotective substances from Huangkui capsule.
Tingting MA ; Yi WANG ; Xiaoqian CHEN ; Xiaoping ZHAO
Journal of Zhejiang University. Medical sciences 2017;46(1):66-73
To discover the nephroprotective substances from Huangkui capsule.The components of Huangkui capsule were isolated by preparative liquid chromatography, and the active components were screened by LC/MS and identified. The adriamycine-injured HK-2 cells were treated with various active components with different concentrations, and the malonaldehyde (MDA) content, adenosine triphosphate (ATP) level and mitochondrial oxygen consumption rate were measured to verify the protective activity of the compounds.Four active components in Huangkui capsule were identified to exert nephroprotective effects. Fifteen flavanoids from these four components were tentatively identified by LC/MS, and hyperin, myricetin, quercetin, rutin and isoquercetin were confirmed. Hyperin, myricetin quercetin and rutin showed dose-dependent protective effects on injured HK-2 cells. Espacially, hyperin significantly reduced MDA content, quercetin and rutin significantly increased ATP level, and myricetin significantly increased mitochondrial oxygen consumption rate.Hyperin, myricetin, querctein and rutin might be the potential nephroprotective compounds in Huangkui capsule, their effects may be related to the inhibition of lipid peroxidation and the alleviation of mitochondrial damage.
Abelmoschus
;
chemistry
;
drug effects
;
Adenosine Triphosphate
;
metabolism
;
Cell Line, Transformed
;
Chromatography, Liquid
;
Doxorubicin
;
Drugs, Chinese Herbal
;
Epithelial Cells
;
drug effects
;
Flavonoids
;
pharmacology
;
Kidney Diseases
;
chemically induced
;
drug therapy
;
prevention & control
;
Kidney Tubules, Proximal
;
drug effects
;
Lipid Peroxidation
;
drug effects
;
Malondialdehyde
;
metabolism
;
Mass Spectrometry
;
Mitochondria
;
drug effects
;
Oxygen Consumption
;
drug effects
;
Protective Agents
;
chemistry
;
pharmacology
;
Quercetin
;
analogs & derivatives
;
pharmacology
;
Rutin
;
pharmacology
5.Angiotensin III increases monocyte chemoattractant protein-1 expression in cultured human proximal tubular epithelial cells.
Hyung Wook KIM ; Young Ok KIM ; Sun Ae YOON ; Jeong Sun HAN ; Hyun Bae CHUN ; Young Soo KIM
The Korean Journal of Internal Medicine 2016;31(1):116-124
BACKGROUND/AIMS: We investigated whether angiotensin III (Ang III) is involved in monocyte recruitment through regulation of the chemokine monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal tubular epithelial cells (HK-2 cells). METHODS: We measured MCP-1 levels in HK-2 cells that had been treated with various concentrations of Ang III and Ang II type-1 (AT1) receptor antagonists at various time points. The phosphorylation states of p38, c-Jun N-terminal kinases (JNK), and extracellular-signal-regulated kinases were measured in Ang III-treated cells to explore the mitogen-activated protein kinase (MAPK) pathway. MCP-1 levels in HK-2 cell-conditioned media were measured after pre-treatment with the transcription factor inhibitors curcumin or pyrrolidine dithiocarbamate. RESULTS: Ang III increased MCP-1 protein production in dose- and time-dependent manners in HK-2 cells, which was inhibited by the AT1 receptor blocker losartan. p38 MAPK activity increased significantly in HK-2 cells exposed to Ang III for 30 minutes, and was sustained at higher levels after 60 minutes (p < 0.05). Total phosphorylated JNK protein levels tended to increase 20 minutes after stimulation with Ang III. Pre-treatment with a p38 inhibitor, a JNK inhibitor, or curcumin significantly inhibited Ang III-induced MCP-1 production. CONCLUSIONS: Ang III increases MCP-1 synthesis via stimulation of intracellular p38 and JNK MAPK signaling activity and subsequent activated protein-1 transcriptional activity in HK-2 cells.
Angiotensin II Type 1 Receptor Blockers/pharmacology
;
Angiotensin III/*pharmacology
;
Cell Line
;
Chemokine CCL2/*metabolism
;
Dose-Response Relationship, Drug
;
Epithelial Cells/*drug effects/metabolism
;
Humans
;
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
;
Kidney Tubules, Proximal/*drug effects/metabolism
;
Phosphorylation
;
Protein Kinase Inhibitors/pharmacology
;
Signal Transduction/drug effects
;
Time Factors
;
Transcription Factor AP-1/metabolism
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
6.Protective Effect of 10-Hz, 1-mT Electromagnetic Field Exposure Against Hypoxia/Reoxygenation Injury in HK-2 Cells.
Soonho LIM ; Soo-Chan KIM ; Jae Young KIM
Biomedical and Environmental Sciences 2015;28(3):231-234
We investigated the protective effects of electromagnetic field (EMF) on the survival of the human renal proximal tubular cell line, HK-2, using an in vitro hypoxia/reoxygenation (H/R) injury model. The survival rate of cells cultured under H/R condition declined significantly, while the intracellular reactive oxygen species (ROS) levels markedly increased. The 10 Hz/1 mT EMF exposure reversed the H/R induced reduction in cell survival and induction of intracellular ROS. Our results suggest that 10 Hz/1 mT EMF exposure could inhibit H/R-induced cell death of HK-2 via suppression of intracellular ROS production and that this treatment might be clinically useful for the amelioration of renal ischemia/reperfusion injury.
Cell Hypoxia
;
Cell Line
;
Electromagnetic Fields
;
Humans
;
Kidney Tubules, Proximal
;
cytology
;
metabolism
;
radiation effects
;
Reactive Oxygen Species
;
metabolism
;
Reperfusion Injury
;
prevention & control
7.High SIPA-1 expression in proximal tubules of human kidneys under pathological conditions.
Ai-ping FENG ; Qian ZHANG ; Min LI ; Xin-nong JIANG ; Zong-yong ZHANG ; Peng ZHU ; Ming-wei WANG ; Shao-zhong WEI ; Li SU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(1):64-70
Systemic lupus erythematosus (SLE) and clear cell renal cell carcinoma (CC-RCC) are serious disorders and usually fatal, and always accompanied with pathological changes in the kidney. Signal-induced proliferation-associated protein 1 (SIPA-1) is a Rap1GTPase activating protein (Rap1GAP) expressed in the normal distal and collecting tubules of the murine kidney. Lupus-like autoimmune disease and leukemia have been observed in SIPA-1 deficient mice, suggesting a pathological relevance of SIPA-1 to SLE and carcinoma in human being. The expression pattern of SIPA-1 is as yet undefined and the pathogenesis of these diseases in humans remains elusive. In this study, we used both immunohistochemistry and quantum dot (QD)-based immunofluorescence staining to investigate the expression of SIPA-1 in renal specimens from SLE and CC-RCC patients. MTT assay and Western blotting were employed to evaluate the effects of SIPA-1 overexpression on the proliferation and apoptosis of renal cell lines. Semi-quantitative reverse transcriptase-PCR (RT-PCR) was applied to examine the changes of hypoxia-inducible factor-1α (HIF-1α) mRNA level. Results showed that SIPA-1 was highly expressed in the proximal and collecting tubules of nephrons in SLE patients compared to normal ones, and similar results were obtained in the specimens of CC-RCC patients. Although SIPA-1 overexpression did not affect cellular proliferation and apoptosis of both human 786-O renal cell carcinoma cells and rat NRK-52E renal epithelial cell lines, RT-PCR results showed that HIF-1α mRNA level was down-regulated by SIPA-1 overexpression in 786-O cells. These findings suggest that SIPA-1 may play critical roles in the pathological changes in kidney, and might provide a new biomarker to aid in the diagnosis of SLE and CC-RCC.
Apoptosis
;
Base Sequence
;
Cell Line
;
Cell Proliferation
;
DNA Primers
;
GTPase-Activating Proteins
;
metabolism
;
Humans
;
Kidney Tubules, Proximal
;
metabolism
;
pathology
;
Lupus Erythematosus, Systemic
;
metabolism
;
pathology
;
Nuclear Proteins
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
8.Bilirubin Activates Transcription of HIF-1alpha in Human Proximal Tubular Cells Cultured in the Physiologic Oxygen Content.
Sung Gyun KIM ; Shin Young AHN ; Eun Seong LEE ; Sejoong KIM ; Ki Young NA ; Dong Wan CHAE ; Ho Jun CHIN
Journal of Korean Medical Science 2014;29(Suppl 2):S146-S154
The expression of hypoxia-inducible factor (HIF) is influenced by reactive oxygen species (ROS). Effect of bilirubin on HIF-1 expression in proximal tubular cells was investigated under physiological oxygen concentration, which is relative hypoxic condition mimicking oxygen content in the medulla of renal tissue. The human kidney (HK2) cells were cultured in 5% oxygen with or without bilirubin. HIF-1alpha protein expression was increased by bilirubin treatment at 0.01-0.2 mg/dL concentration. The messenger RNA expression of HIF-1alpha was increased by 1.69+/-0.05 folds in the cells cultured with 0.1 mg/dL bilirubin, compared to the control cells. The inhibitors of PI3K/mTOR, PI3K/AKT, and ERK 1/2 pathways did not attenuate increased HIF-1alpha expression by bilirubin. HIF-1alpha expression decreased by 10 microM exogenous hydrogen peroxide (H2O2); scavenger of ROS with or without bilirubin in the HK2 cells increased HIF-1alpha concentration more than that in the cells without bilirubin. Exogenous H2O2 decreased the phosphorylation of P70S6 kinase, which was completely reversed by bilirubin treatment. Knockdown of NOX4 gene by small interfering RNA (siRNA) increased HIF-1alpha mRNA expression. In coonclusion, bilirubin enhances HIF-1alpha transcription as well as the up-regulation of HIF-1alpha protein translation through the attenuation of ROS and subunits of NADPH oxidase.
Bilirubin/*pharmacology
;
Cell Line
;
Epithelial Cells/cytology/metabolism
;
Humans
;
Hydrogen Peroxide/toxicity
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/*metabolism
;
Kidney Tubules, Proximal/cytology
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
NADPH Oxidase/antagonists & inhibitors/genetics/metabolism
;
Oxygen/*pharmacology
;
Phosphatidylinositol 3-Kinases/metabolism
;
Phosphorylation/drug effects
;
Proto-Oncogene Proteins c-akt/metabolism
;
RNA Interference
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism
;
Signal Transduction/drug effects
;
TOR Serine-Threonine Kinases/metabolism
;
Transcriptional Activation/*drug effects
;
Up-Regulation/drug effects
9.Cobalt Chloride Attenuates Oxidative Stress and Inflammation through NF-kappaB Inhibition in Human Renal Proximal Tubular Epithelial Cells.
Se Won OH ; Yun Mi LEE ; Sejoong KIM ; Ho Jun CHIN ; Dong Wan CHAE ; Ki Young NA
Journal of Korean Medical Science 2014;29(Suppl 2):S139-S145
We evaluated the effect of cobalt chloride (CoCl2) on TNF-alpha and IFN-gamma-induced-inflammation and reactive oxygen species (ROS) in renal tubular epithelial cells (HK-2 cells). We treated HK-2 cells with CoCl2 before the administration of TNF-alpha/IFN-gamma. To regulate hemeoxygenase-1 (HO-1) expression, the cells were treated CoCl2 or HO-1 siRNA. CoCl2 reduced the generation of ROS induced by TNF-alpha/IFN-gamma. TNF-alpha/IFN-gamma-treated-cells showed an increase in the nuclear translocation of phosphorylated NF-kappaBp65 protein, the DNA-binding activity of NF-kappaBp50 and NF-kappaB transcriptional activity and a decrease in IkappaBalpha protein expression. These changes were restored by CoCl2. We noted an intense increase in monocyte chemoattractant protein-1 (MCP-1) and regulated on activation normal T cell expressed and secreted (RANTES) production in TNF-alpha/IFN-gamma-treated cells. We demonstrated that this effect was mediated through NF-kappaB signaling because an NF-kappaB inhibitor significantly reduced MCP-1 and RANTES production. CoCl2 effectively reduced MCP-1 and RANTES production. The expression of HO-1 was increased by CoCl2 and decreased by HO-1 siRNA. However, knockdown of HO-1 by RNA interference did not affect MCP-1 or RANTES production. We suggest that CoCl2 has a protective effect on TNF-alpha/IFN-gamma-induced inflammation through the inhibition of NF-kappaB and ROS in HK-2 cells. However, CoCl2 appears to act in an HO-1-independent manner.
Cell Line
;
Chemokine CCL2/metabolism
;
Chemokine CCL5/metabolism
;
Cobalt/*pharmacology
;
Epithelial Cells/cytology/metabolism
;
Heme Oxygenase-1/antagonists & inhibitors/genetics/metabolism
;
Humans
;
*Inflammation
;
Interferon-gamma/pharmacology
;
Kidney Tubules, Proximal/cytology
;
NF-kappa B/antagonists & inhibitors/genetics/*metabolism
;
NF-kappa B p50 Subunit/genetics/metabolism
;
Oxidative Stress/*drug effects
;
Phosphorylation
;
Protein Binding
;
RNA Interference
;
RNA, Small Interfering/metabolism
;
Transcription Factor RelA/metabolism
;
Tumor Necrosis Factor-alpha/pharmacology
10.Effect of surfactant protein A on lipopolysaccharide-induced tumor necrosis factor-α expression in human proximal tubular epithelial cells.
Jiao LIU ; Zhiyong LIU ; Lizhi FENG ; Guohua DING ; Dechang CHEN ; Qingshan ZHOU
Chinese Medical Journal 2014;127(2):343-347
BACKGROUNDSurfactant protein A (SP-A) contributes to the regulation of sepsis-induced acute lung injury. In a previous study, we demonstrated the expression and localization of SP-A in the kidneys. The present study evaluated the effect of SP-A on lipopolysaccharide (LPS)-induced tumor necrosis factor-a (TNF-α) expression and its underlying mechanisms in the human renal tubular epithelial (HK-2) cells.
METHODSIndirect immunofluorescence assay was used to detect SP-A distribution and expression in HK-2 cells. HK-2 cells were treated with various concentrations of LPS (0, 0.1, 1, 2, 5, and 10 mg/L) for 8 hours and with 5 mg/L LPS for different times (0, 2, 4, 8, 16, and 24 hours) to determine the effects of LPS on SP-A and TNF-α expression. Then, HK-2 cells were transfected with SP-A siRNA to analyze nuclear factor κB (NF-κB) P65 and TNF-α expression of HK-2 cells after LPS-treatment.
RESULTSIndirect immunofluorescence assay revealed that SP-A is localized to the membrane and cytoplasm of HK-2 cells. Interestingly, SP-A1/SP-A2 and TNF-a expression were found to be significantly increased in HK-2 cells upon LPS treatment. Transfection of LPS-treated HK-2 cells with SP-A siRNA resulted in significant increases in the levels of NF-κB P65 protein and TNF-α mRNA and protein compared to those in non-transfected LPS-treated HK-2 cells.
CONCLUSIONSP-A plays an important role in protecting cells against sepsis-induced acute kidney injury by inhibiting NF-κB activity to modulate LPS-induced increase in TNF-α expression.
Cell Line ; Epithelial Cells ; cytology ; drug effects ; metabolism ; Fluorescent Antibody Technique, Indirect ; Humans ; Kidney Tubules, Proximal ; cytology ; Lipopolysaccharides ; pharmacology ; Pulmonary Surfactant-Associated Protein A ; metabolism ; pharmacology ; Tumor Necrosis Factor-alpha ; metabolism

Result Analysis
Print
Save
E-mail