1.C1q or IgA deposition in glomeruli of children with primary membranous nephropathy.
Ke XU ; Fang WANG ; Zhong Hua WANG ; Liu Yu SUN ; Yong YAO ; Hui Jie XIAO ; Xiao Yu LIU ; Bai Ge SU ; Xu Hui ZHONG ; Na GUAN ; Hong Wen ZHANG ; Jie DING
Chinese Journal of Pediatrics 2022;60(9):901-907
		                        		
		                        			
		                        			Objective: To assess the correlation of glomerular C1q or IgA deposition with clinical and pathological features of primary membranous nephropathy (PMN) in children. Methods: The clinical and pathological manifestations including (phospholipase A2 receptor, PLA2R) and IgG subclasses staining in renal biopsies, serum anti-PLA2R antibody and therapeutic response of 33 children diagnosed with PMN in Peking University First Hospital from December 2012 to December 2020 were retrospectively summarized and analyzed. According to results of PLA2R test and findings renal pathological, the patients were divided into PLA2R-related group and non-PLA2R-related group, typical MN group and atypical MN group, C1q deposit group and non-C1q deposit group, as well as IgA deposit group and non-IgA deposit group respectively. T-test, Mann-Whitney U test and Fisher's exact probability test were used for comparison between the groups. Results: Among the 33 children with PMN, there were 20 males and 13 females, of that the age of onset was 11 (8, 13) years, and 32 patients had nephrotic level proteinuria. Renal biopsies were performed at 4.6 (2.1, 11.6) months after onset, and 28 patients (85%) received glucocorticoid or immunosuppressive therapy prior to renal biopsy. There were 20 cases (61%) with PLA2R-related MN and 13 cases (39%) with non-PLA2R-related MN. Compared with the non-PLA2R-related group, the PLA2R-related group had an older age of onset (12 (10, 13) vs. 7 (3, 12) years, Z=-2.52, P=0.011), a lower preceding infection rate (45% (9/20) vs. 11/13, P=0.032) and lower spontaneous remission rate (0 vs. 4/13, P=0.017). Renal PLA2R positivity was significantly associated with predominant or co-deposition of IgG4 (13/17 vs. 5/15, P=0.031) and low albumin levels at renal biopsy ((25±6) vs. (29±7) g/L, t=2.14, P=0.041). There were 12 patients with typical PMN and 21 patients with atypical PMN, and no significant difference in clinical and pathological manifestations was found between these 2 groups (all P>0.05). There were 10 cases (32.3%) with glomerular C1q deposition, and their disease course before renal biopsy was significantly shorter than those without C1q deposition (1.8 (0.8, 5.9) vs. 6.0 (2.5, 22.3) months, Z=-2.27, P=0.023). Twelve cases (36.4%) had glomerular IgA deposition, and their course of disease,clinical and pathological manifestations were not significantly different from those without IgA deposition (all P>0.05). Conclusion: Glomerular C1q or IgA deposition may not affect the clinical manifestations, glomerular PLA2R and IgG subclasses staining pattern, or the response to treatment of PMN in children.
		                        		
		                        		
		                        		
		                        			Autoantibodies
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Complement C1q/metabolism*
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Glomerulonephritis, Membranous/drug therapy*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunoglobulin A/immunology*
		                        			;
		                        		
		                        			Immunoglobulin G
		                        			;
		                        		
		                        			Kidney Glomerulus
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Retrospective Studies
		                        			
		                        		
		                        	
2.Purinergic 2X7 Receptor is Involved in the Podocyte Damage of Obesity-Related Glomerulopathy via Activating Nucleotide-Binding and Oligomerization Domain-Like Receptor Protein 3 Inflammasome.
Xiao-Xia HOU ; Hong-Rui DONG ; Li-Jun SUN ; Min YANG ; Hong CHENG ; Yi-Pu CHEN
Chinese Medical Journal 2018;131(22):2713-2725
		                        		
		                        			Background:
		                        			The nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome composed of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), and caspase-1 is engaged in the inflammatory response of many kidney diseases and can be activated by purinergic 2X7 receptor (P2X7R). This study was conducted to explore whether P2X7R plays a pathogenic role in the podocyte damage of obesity-related glomerulopathy (ORG) and whether this role is mediated by the activation of NLRP3 inflammasome.
		                        		
		                        			Methods:
		                        			A mouse model of ORG was established by high-fat diet feeding. The conditionally immortalized mouse podocytes were cultured with leptin or with leptin and P2X7R antagonist (KN-62 or A438079). The mRNA and protein expression of the P2X7R and NLRP3 inflammasome components including NLRP3, ASC, and caspase-1, as well as the podocyte-associated molecules including nephrin, podocin, and desmin in mouse renal cortex or cultured mouse podocytes were tested by real-time-polymerase chain reaction and Western blot analysis, respectively.
		                        		
		                        			Results:
		                        			The significantly upregulated expression of P2X7R and NLRP3 inflammasome components and the NLRP3 inflammasome activation were observed in the renal cortex (in fact their location in podocytes was proved by confocal microscopy) of ORG mice in vivo, which were accompanied with the morphological changes of podocyte damage and the expression changes of podocyte-associated molecules. Similar changes in the expression of P2X7R and NLRP3 inflammasome components as well as in the expression of podocyte-associated molecules were also observed in the cultured podocyte studies treated by leptin in vitro, and all of the above changes were significantly attenuated by the P2X7R antagonist KN-62 or A438079.
		                        		
		                        			Conclusions
		                        			P2X7R could trigger the activation of NLRP3 inflammasome, and the activated P2X7R/NLRP3 inflammasome in podocytes might be involved in the podocyte damage of ORG.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Inflammasomes
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Kidney Glomerulus
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Obesity
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			Podocytes
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Receptors, Purinergic P2X7
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
3.Therapeutic Role of Tangshenkang Granule () in Rat Model with Diabetic Nephropathy.
Shun-Jin HU ; Bing SHU ; Hua JIN ; Xiao-Feng LI ; Jia-Rong MAO ; Ke-Jun REN ; Lei GAO ; Li YANG ; You-Wan WU ; Yong-Jun WANG
Chinese journal of integrative medicine 2018;24(8):600-605
OBJECTIVETo evaluate the renal protective effect of Tangshenkang Granule () in a rat model of diabetic nephropathy (DN).
METHODSForty male Sprague-Dawley rats were randomly divided into control, DN, Tangshenkang and benazepril groups. DN model was established in the rats of DN, Tangshenkang and benazepril groups. Tangshenkang Granule solution and benazepril hydrochloride solution were intragastrically administered daily to the rats in the Tangshenkang and benazepril groups for 8 weeks, respectively. Urinary albumin and creatinine were detected. The albumin/creatinine (ACR) was calculated in addition to 24 h urinary protein (24-h UPr), serum creatinine (Scr), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and creatinine clearance rate (Ccr). Right kidneys were harvested for pathological observation using periodic acid-silver methenamine-Masson staining. The average glomerular diameter (DG), average glomerular (AG) and mesangial areas (AM) were measured. The thickness of glomerular basement membrane (TGBM) was detected using transmission electron microscope.
RESULTSCompared with rats in the control group, rats in the DN group showed significantly decreased body weight, increased hypertrophy index, 24-h urinary volume, 24-h UPr, ACR, Scr, BUN, Ccr, blood lipids as well as renal pathological indices including DG, AG, AM, AM/AG and TGBM (P <0.05). Compared with the DN group, the weights of rats in the Tangshenkang and benazepril groups were significantly increased, and the renal hypertrophy indices were significantly decreased (P <0.05). The 24-h urinary volumes, ACR, 24-h UPr, Scr, BUN, Ccr, LDL, DG, AG, AM and TGBM were obviously decreased (P <0.05). Compared with the benazepril group, the Tangshenkang group showed significantly decreased levels of ACR, 24-h UPr, AG and AM (P <0.05).
CONCLUSIONSTangshenkang Granule decreased the urinary protein, attenuated the high glomerular filtration rate and improved lipid metabolism in DN rats, and prevented further injury induced by diabetic nephropathy.
Albuminuria ; complications ; Animals ; Basement Membrane ; drug effects ; metabolism ; Blood Urea Nitrogen ; Body Weight ; drug effects ; Creatinine ; blood ; urine ; Diabetic Nephropathies ; blood ; drug therapy ; physiopathology ; urine ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Hypertrophy ; Kidney Function Tests ; Kidney Glomerulus ; drug effects ; pathology ; physiopathology ; Lipid Metabolism ; drug effects ; Lipids ; blood ; Male ; Rats, Sprague-Dawley
4.Huaiqihuang Granules () reduce proteinuria by enhancing nephrin expression and regulating necrosis factor κB signaling pathway in adriamycin-induced nephropathy.
Hong LIU ; Wei SUN ; Liu-Bao GU ; Yue TU ; Bing-Yin YU ; Hao HU
Chinese journal of integrative medicine 2017;23(4):279-287
OBJECTIVETo investigate the effects of Huaiqihuang Granules (, HQH), a mixture of Chinese herbs including Trametes robiniophila Murr, Fructus Lycii and Polygonatum sibiricum, on adriamycininduced nephropathy (ADRN) in rats and its underlying mechanisms.
METHODSRats with ADRN were divided into four groups: the sham group, the model group (distilled water), the low-dose HQH-treated (2 g/kg) group, and the high-dose HQH-treated (4 g/kg) group. Body weight and 24-h urinary protein (Upro) were checked every week. After 5-week intervention, at the end of the study, the rats were sacrificed and blood samples were collected for examination of biochemical parameters, including glomerular morphological makers, podocyte shape, cellular apoptosis, expressions of nephrin, inflammatory and apoptosis markers.
RESULTSHQH ameliorated the rat's general status, proteinuria, renal morphological appearance and glomerulosclerosis. The decreased expression of nephrin in ADRN rats was increased by HQH, as well as the impaired podocyte foot process fusion. Cytosolic levels of p65 and inhibitor of nuclear factor κBα (IκBα) were decreased in ADRN rats, and recovered by the treatment of HQH. Consistently, the induced expression of tumor necrosis factor α (TNF-α), phosphorylated nuclear factor κB p65 (p-NFκB p65) and IκBα in ADRN were markedly suppressed by HQH. In addition, induction of Bax, cleaved caspase-3 and cytochrome C in ADRN rats were suppressed by HQH, indicating the amelioration of apoptosis.
CONCLUSIONHQH could ameliorate renal impairments in ADRN rats by increasing nephrin expression, inhibiting NF-κB signaling pathway via the down-regulation of p-NF-κB p65 and p-IκBα, and suppression of glomerular and tubular apoptosis.
Animals ; Apoptosis ; drug effects ; Body Weight ; drug effects ; Caspase 3 ; metabolism ; Chromatography, High Pressure Liquid ; Cytochromes c ; metabolism ; Doxorubicin ; adverse effects ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Kidney ; drug effects ; pathology ; Kidney Diseases ; blood ; chemically induced ; complications ; drug therapy ; Kidney Glomerulus ; drug effects ; pathology ; ultrastructure ; Kidney Tubules ; drug effects ; pathology ; ultrastructure ; Male ; Membrane Proteins ; metabolism ; NF-KappaB Inhibitor alpha ; metabolism ; NF-kappa B ; metabolism ; Organ Size ; drug effects ; Proteinuria ; blood ; complications ; drug therapy ; Rats, Sprague-Dawley ; Signal Transduction ; drug effects ; Transcription Factor RelA ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism ; bcl-2-Associated X Protein ; metabolism
5.Protective Effects of Curcumin on Renal Oxidative Stress and Lipid Metabolism in a Rat Model of Type 2 Diabetic Nephropathy.
Bo Hwan KIM ; Eun Soo LEE ; Ran CHOI ; Jarinyaporn NAWABOOT ; Mi Young LEE ; Eun Young LEE ; Hyeon Soo KIM ; Choon Hee CHUNG
Yonsei Medical Journal 2016;57(3):664-673
		                        		
		                        			
		                        			PURPOSE: Diabetic nephropathy is a serious complication of type 2 diabetes mellitus, and delaying the development of diabetic nephropathy in patients with diabetes mellitus is very important. In this study, we investigated inflammation, oxidative stress, and lipid metabolism to assess whether curcumin ameliorates diabetic nephropathy. MATERIALS AND METHODS: Animals were divided into three groups: Long-Evans-Tokushima-Otsuka rats for normal controls, Otsuka-Long-Evans-Tokushima Fatty (OLETF) rats for the diabetic group, and curcumin-treated (100 mg/kg/day) OLETF rats. We measured body and epididymal fat weights, and examined plasma glucose, adiponectin, and lipid profiles at 45 weeks. To confirm renal damage, we measured albumin-creatinine ratio, superoxide dismutase (SOD), and malondialdehyde (MDA) in urine samples. Glomerular basement membrane thickness and slit pore density were evaluated in the renal cortex tissue of rats. Furthermore, we conducted adenosine monophosphate-activated protein kinase (AMPK) signaling and oxidative stress-related nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling to investigate mechanisms of lipotoxicity in kidneys. RESULTS: Curcumin ameliorated albuminuria, pathophysiologic changes on the glomerulus, urinary MDA, and urinary SOD related with elevated Nrf2 signaling, as well as serum lipid-related index and ectopic lipid accumulation through activation of AMPK signaling. CONCLUSION: Collectively, these findings indicate that curcumin exerts renoprotective effects by inhibiting renal lipid accumulation and oxidative stress through AMPK and Nrf2 signaling pathway.
		                        		
		                        		
		                        		
		                        			Albuminuria
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents, Non-Steroidal/*therapeutic use
		                        			;
		                        		
		                        			Curcumin/*pharmacology
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2/*metabolism/urine
		                        			;
		                        		
		                        			Diabetic Nephropathies/complications/*drug therapy/metabolism/pathology
		                        			;
		                        		
		                        			Gene Expression/drug effects
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Kidney/drug effects/metabolism/physiopathology
		                        			;
		                        		
		                        			Kidney Glomerulus/metabolism/physiopathology
		                        			;
		                        		
		                        			Lipid Metabolism/*drug effects
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Malondialdehyde/metabolism/urine
		                        			;
		                        		
		                        			Oxidative Stress/*drug effects
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Inbred OLETF
		                        			;
		                        		
		                        			Rats, Long-Evans
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism
		                        			
		                        		
		                        	
6.Xuezhikang () reduced renal cell apoptosis in streptozocin-induced diabetic rats through regulation of Bcl-2 family.
Wei-Na LU ; Fen-Ping ZHENG ; Dong-Wu LAI ; Hong LI
Chinese journal of integrative medicine 2016;22(8):611-618
OBJECTIVETo investigate the effect of Xuezhikang (, XZK) on renal cell apoptosis in diabetic rats and the possible mechanism.
METHODSSixty-six rats were randomly divided into 3 groups: the normal, model and XZK groups. In each group, the rats were further randomly divided into 3-month and 6-month subgroups, respectively. Diabetes of rats was induced by a single intraperitoneal injection of 1% streptozocin at 60 mg/kg body weight. Rats in the XZK group received gastric perfusion of XZK (1200 mg/kg body weight) everyday for 3 or 6 months, while rats in the normal and model groups received equal volume of saline. Twenty-four hours' urine was collected for urinary albumin excretion (UAE) measurement. Periodic acid-Schiff (PAS) and Masson's trichrome staining were used for saccharides and collagen detection. Cell apoptosis of renal cortex was investigated by TdT-mediated dUTP nick end labeling (TUNEL) staining. Bax and Bcl-2 expressions were detected by immunohistochemistry and Western blot, respectively. Cytochrome C (Cyt C) and caspase-9 concentration were detected by Western blot.
RESULTSCompared with the model group, XZK treatment could significantly decrease the kidney hypertrophy index, 24 h UAE, renal cell apoptosis, cytoplasmic Cyt C level and active caspase-9 level, as well as suppress the increment of Bax and up-regulate the expression of Bcl-2, leading to the suppression of Bax/Bcl-2 ratio at 3 and 6 months (P<0.05 or P<0.01). Moreover, XZK treatment could alleviate the deposition of PAS-stained saccharides and Masson's trichromestained collagen to different extent.
CONCLUSIONSRenal cell apoptosis was observed in diabetic kidney, in which mitochondrial apoptotic pathway might be involved. XZK treatment could attenuate pathological changes in diabetic kidney and reduce renal cell apoptosis, probably via the suppression of Bax/Bcl-2 ratio, which lead to inhibition of Cyt C release and following caspase-9 activation.
Albuminuria ; blood ; complications ; Animals ; Apoptosis ; drug effects ; Blood Glucose ; metabolism ; Caspase 9 ; metabolism ; Cytochromes c ; metabolism ; Diabetes Mellitus, Experimental ; blood ; drug therapy ; metabolism ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Hypertrophy ; In Situ Nick-End Labeling ; Kidney ; drug effects ; pathology ; Kidney Glomerulus ; pathology ; Lipids ; blood ; Male ; Mesangial Cells ; drug effects ; pathology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Rats, Sprague-Dawley ; Streptozocin ; bcl-2-Associated X Protein ; metabolism
7.Role of miR-663 in acute renal graft rejection: an in vitro study.
Xiao-You LIU ; Jie ZHANG ; Jie LIANG ; Yong-Guang LIU ; Jian-Min HU ; Zheng-Yao JIANG ; Ze-Feng GUO
Journal of Southern Medical University 2016;36(3):419-422
OBJECTIVETo compare the serum miR-663 levels in renal transplant patients with and without acute rejection (AR) and explore the role of miR-663 acute renal graft rejection.
METHODSReal time-PCR was used to determine serum miR-663 levels in renal transplant recipients with and without AR. MTT assay and Annexin V-FITC assay were employed to examine the viability and apoptosis of human renal glomerular endothelial cells (HRGEC) treated with a miR-663 mimic or a miR-663 inhibitor, and ELISA was performed to detect the expression of inflammation-related cytokines including IL-6, IFN-γ, CCL-2 and TNF-α in the cells. Transwell assay was used to examine the effect of miR-663 mimic and miR-663 inhibitor on the chemotactic capability of macrophages.
RESULTSSerum miR-663 level was significantly higher in renal transplant recipients with AR than in those without AR. The miR-663 mimic significantly inhibited the viability of HRGECs and increase the cell apoptosis rate, while miR-663 inhibitor suppressed the cell apoptosis. The miR-663 mimic increased the expression levels of inflammation-related cytokines and enhanced the chemotactic capability of macrophages.
CONCLUSIONmiR-663 might play important roles in acute renal graft rejection and may become a therapeutic target for treating AR.
Apoptosis ; Cells, Cultured ; Cytokines ; metabolism ; Endothelial Cells ; cytology ; Graft Rejection ; blood ; Humans ; Kidney Glomerulus ; cytology ; Kidney Transplantation ; Macrophages ; cytology ; drug effects ; MicroRNAs ; blood
8.Effect of Wenyang Huoxue Lishul Recipe Containing Serum on Expression of Cathepsin L in Puromycin Aminonucleoside-induced Injury of Mouse Glomerular Podocytes.
Wen-wen QIU ; Jun YUAN ; Liu YANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):602-607
OBJECTIVETo observe the effect of Wenyang Huoxue Lishui Recipe (WHLR) containing serum on the expression of cathepsin L (CatL) in puromycin aminonucleoside-induced injury of mouse glomerular podocytes.
METHODSMouse podocyte cells (MPCs) in vitro cultured were divided into the normal control group, the model group, the dexamethasone (DEX) group, 10% WHLR containing serum group, 20% WHLR containing serum group, the vehicle serum control group. MPCs in the normal control group were cultured at 37 degrees C culture solution for 24 h. 45 mg/L puromycin was acted on MPCs in the model group for 24 h. On the basis of puromycin intervention, 1 limol/L DEX was co-incubated in MPCs of the DEX group for 24 h; 10% or 20% WHLR containing serum was co-incubated in MPCs of the 10% WHLR containing serum group and 20% WHLR containing serum group for 24 h. The vehicle serum control group was also set up by incubating with WHLR containing serum alone for 24 h. The expression of CatL and its substrate Synaptopodin in podocytes were detected by cell immunofluorescence staining. FITC-conjugated phalloidin was used to stain F-actin. A cortical F-actin score index (CFS index) was designed to quantify the degree of cytoskeletal reorganization in cultured podocytes.
RESULTSCompared with the normal control group, the expression of synaptopodin significantly decreased and the expression of CatL significantly-increased in the model group. F-actin arranged in disorder, gradually forming pericellular F-actin ring. CFS index was obviously elevated (P < 0.01). Compared with the model group, the epression of synaptopodin increased, the expression of CatL decreased, and CFS index also decreased in the DEX group, 10% WHLR containing serum group, and 20% WHLR containing serum group (P < 0.05, P < 0.01). Compared with the DEX group, the expression of synaptopodin decreased in 10% WHLR containing serum group, CFS index also decreased in 20% WHLR containing serum group (P < 0.05).
CONCLUSIONSWHLR could up-regulate the expression of synaptopodin, down-regulate the expression of CatL, and alleviate cytoskeletal reorganization of F-actin. It was helpful to stabilize the cytoskeleton of F-actin and improve the merging of podocytes.
Actins ; metabolism ; Animals ; Cathepsin L ; metabolism ; Cells, Cultured ; Down-Regulation ; Drugs, Chinese Herbal ; pharmacology ; Kidney Glomerulus ; cytology ; Mice ; Microfilament Proteins ; metabolism ; Podocytes ; drug effects ; pathology ; Puromycin Aminonucleoside ; adverse effects ; Up-Regulation
9.Effect of Modified Hangqi Chifeng Decoction Containing Serum on the Expression of Col IV, MMP-2, and TIMP-2 in Glomerular Mesangial Cells Induced by LPS.
Hong-xia LIU ; Yu ZHANG ; Peng LI ; Yan-hong GAO ; Shuang LI ; Zi-kai YU
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):592-596
OBJECTIVETo explore the effect of Modified Hangqi Chifeng Decoction (MHCD) on levels of collagen type IV (Col IV), matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase-2 (TIMP-2) in extracellular matrix (ECM) of glomerular mesangial cells (GMCs) in LPS induced mice.
METHODSNormal serum and telmisartan, high, medium, low dose MHCD containing serums were prepared by using serum pharmacology method. GMCs were cultured in vitro. The proliferation of mesangial cells were induced using LPS as stimulating factor. GMCs were divided into six groups, i.e., the normal group, the model group, the telmisartan group, high, medium and low dose MHCD groups. Col IV content in the supernatant of mesangial cells was detected using ELISA. Protein expressions of MMP-2 and TIMP-2 were detected using Western blot.
RESULTSCompared with the normal group, Col IV content obviously increased in the model group after 72-h LPS stimulation; protein expressions of MMP-2 and TIMP-2 were obviously up-regulated, and MMP-2/TIMP-2 ratio was down-regulated in the model group (P < 0.01). Compared with the model group, Col IV content obviously decreased in high and medium dose MHCD groups and the telmisartan group (P < 0.01); protein expressions of MMP-2 were obviously down-regulated in medium and low dose MHCD groups (P < 0.01, P < 0.05); the protein expression of TIMP-2 was obviously down-regulated in high, medium, low dose MHCD groups and the telmisartan group (P < 0.01). The pro- tein expression of TIMP-2 was obviously lower in the high dose MHCD group than in the low dose MHCD group (P < 0.01). MMP-2/TIMP-2 ratio was obviously up-regulated in the telmisartan group, high and medium dose MHCD groups (P < 0.01).
CONCLUSIONMHCD could regulate disordered MMP-2/TIMP-2 ratio in LPS induced ECM, inhibit excessive production of Col IV in ECM, promote the degradation of ECM, reduce the accumulation of ECM, thereby, delaying the process of glomerular sclerosis.
Animals ; Cells, Cultured ; Collagen Type IV ; metabolism ; Extracellular Matrix ; metabolism ; Kidney Glomerulus ; cytology ; Matrix Metalloproteinase 2 ; metabolism ; Mesangial Cells ; drug effects ; Mice ; RNA, Messenger ; metabolism ; Tissue Inhibitor of Metalloproteinase-2 ; metabolism
10.Regulative mechanisms of mammalian target of rapamycin signaling pathway in glomerular hypertrophy in diabetic nephropathy and interventional effects of Chinese herbal medicine.
Jing-Jing YANG ; Yan-ru HUANG ; Yi-gang WAN ; Shan-mei SHEN ; Zhi-min MAO ; Wei WU ; Jian YAO
China Journal of Chinese Materia Medica 2015;40(16):3125-3131
		                        		
		                        			
		                        			Glomerular hypertrophy is the main pathological characteristic in the early stage of diabetic nephropathy (DN), and its regulatory mechanism is closely related to mammalian target of rapamycin (mTOR) signaling pathway activity. mTOR includes mTOR complex 1 (mTORC1) and mTOR complex 2(mTORC2), in which, the upstream pathway of mTORC1 is phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase(Akt)/adenosine monophosphate activated protein kinase(AMPK), and the representative signaling molecules in the downstream pathway of mTORC1 are 4E-binding proteins(4EBP) and phosphoprotein 70 S6Kinase(p70S6K). Some Chinese herbal extracts could improve cell proliferation via intervening the expressions of the key molecules in the upstream or downstream of PIK/Akt/mTOR signaling pathway in vivo. As for glomerular mesangial cells(MC) and podocyte, mTOR plays an important role in regulating glomerular inherent cells, including adjusting cell cycle, energy metabolism and matrix protein synthesis. Rapamycin, the inhibitor of mTOR, could suppress glomerular inherent cell hypertrophy, cell proliferation, glomerular basement membrane (GBM) thickening and mesangial matrix deposition in model rats with DN. Some Chinese herbal extracts could alleviate glomerular lesions by intervening mTOR signaling pathway activity in renal tissue of DN animal models or in renal inherent cells in vivo and in vitro.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Diabetic Nephropathies
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypertrophy
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Kidney Glomerulus
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail