1.Anti-tumor and immune-modulating effect of decoction in mice bearing hepatoma H22 tumor.
Limei CHEN ; Tong JIN ; Chuntao NING ; Suli WANG ; Lijie WANG ; Jingming LIN
Journal of Southern Medical University 2019;39(2):241-248
OBJECTIVE:
To investigate the antitumor activity of decoction and study its liver and kidney toxicity and its effect on the immune system in a tumor-bearing mouse model.
METHODS:
Hepatoma H22 tumor-bearing mouse models were randomized into model group, cyclophosphamide (CTX) group, and low-, moderate-, and high-dose decoction groups (JW-L, JW-M, and JW-H groups, respectively). The antitumor activity of decoction was assessed by calculating the tumor inhibition rate and pathological observation of the tumor tissues. Immunohistochemistry was used to detect the expressions of Bax, Bcl-2, Bax/Bcl-2 and caspase-3 in the tumors. The liver and kidney toxicity of decoction was analyzed by evaluating the biochemical indicators of liver and kidney functions. The immune function of the tumor-bearing mice were assessed by calculating the immune organ index, testing peripheral blood routines, and detection of serum IL-2 and TNF-α levels using enzyme-linked immunosorbent assay.
RESULTS:
Compared with that in the model group, the tumor mass in CTX, JW-M and JW-H groups were all significantly reduced ( < 0.05) with cell rupture and necrosis in the tumors. Immunohistochemistry revealed obviously up-regulated expressions of Bax and caspase-3 and down- regulated expression of Bcl-2 protein with an increased Bax/Bcl-2 ratio in CTX, JW-M and JW-H groups. Treatment with decoction significantly reduced Cr, BUN, AST and ALT levels, improved the immune organ index, increased peripheral blood leukocytes, erythrocytes and hemoglobin levels, and up-regulated the levels of TNF-α and IL-2 in the tumor-bearing mice. These changes were especially significant in JW-H group when compared with the parameters in the model group ( < 0.01).
CONCLUSIONS
decoction has a strong anti-tumor activity and can improve the liver and kidney functions of tumor-bearing mice. Its anti-tumor effect may be attributed to the up-regulation of Bax, caspase-3, TNF-α and IL-2 levels and the down-regulation of Bcl-2 expression as well as the enhancement of the non-specific immune function.
Animals
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Carcinoma, Hepatocellular
;
drug therapy
;
immunology
;
metabolism
;
pathology
;
Drugs, Chinese Herbal
;
pharmacology
;
Kidney
;
drug effects
;
Liver
;
drug effects
;
pathology
;
Liver Neoplasms
;
drug therapy
;
immunology
;
metabolism
;
pathology
;
Mice
;
Necrosis
;
Neoplasm Proteins
;
metabolism
;
Random Allocation
;
Up-Regulation
2.Effect of telmisartan on expression of metadherin in the kidney of mice with unilateral ureter obstruction.
Fenfen PENG ; Hongyu LI ; Bohui YIN ; Yuxian WANG ; Yihua CHEN ; Zhaozhong XU ; Chongwei LUO ; Haibo LONG
Journal of Southern Medical University 2019;39(2):156-161
OBJECTIVE:
To explore the effect of telmisartan on the expression of metadherin in the kidney of mice with unilateral ureter obstruction.
METHODS:
Eighteen male C57 mice were randomized into sham-operated group, model group and telmisartan treatment group. In the latter two groups, renal interstitial fibrosis as the result of unilateral ureter obstruction (UUO) was induced by unilateral ureteral ligation with or without telmisartan intervention. Renal pathological changes of the mice were assessed using Masson staining, and immunohistochemistry and Western blotting were used to detect the expression of extracellular matrix proteins and metadherin in the kidney of the mice. In the experiment, cultured mouse renal tubular epithelial cells (mTECs) were stimulated with transforming growth factor-β1 (TGF-β1) and transfected with a siRNA targeting metadherin, and the changes in the expressions of extracellular matrix proteins and metadherin were detected using Western blotting.
RESULTS:
The expressions of extracellular matrix proteins and metadherin increased significantly in the kidney of mice with UUO ( < 0.05). Intervention with telmisartan significantly lowered the expressions of extracellular matrix proteins and metadherin and alleviated the pathology of renal fibrosis in mice with UUO ( < 0.05). In cultured mTECs, siRNA-mediated knockdown of metadherin obviously reversed TGF-β1-induced increase in the expressions of extracellular matrix proteins and metadherin.
CONCLUSIONS
Telmisartan can suppress the production of extracellular matrix proteins and the expression of metadhein to attenuate UUO-induced renal fibrosis in mice.
Angiotensin II Type 1 Receptor Blockers
;
Animals
;
Antihypertensive Agents
;
Extracellular Matrix Proteins
;
metabolism
;
Fibrosis
;
Kidney
;
drug effects
;
metabolism
;
pathology
;
Male
;
Membrane Proteins
;
genetics
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
RNA, Small Interfering
;
Random Allocation
;
Telmisartan
;
pharmacology
;
Transforming Growth Factor beta1
;
pharmacology
;
Ureteral Obstruction
;
complications
;
metabolism
3.High levels of glucose induce epithelial-mesenchymal transition in renal proximal tubular cells through PERK-eIF2α pathway.
Yan BAO ; Ying AO ; Bo YI ; Jo BATUBAYIER
Chinese Medical Journal 2019;132(7):868-872
Animals
;
Cell Line
;
Diabetic Nephropathies
;
metabolism
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Eukaryotic Initiation Factor-2
;
metabolism
;
Glucose
;
pharmacology
;
Humans
;
Kidney
;
drug effects
;
metabolism
;
pathology
;
Kidney Tubules, Proximal
;
drug effects
;
metabolism
;
Rats
;
Signal Transduction
;
drug effects
4.Therapeutic Role of Tangshenkang Granule () in Rat Model with Diabetic Nephropathy.
Shun-Jin HU ; Bing SHU ; Hua JIN ; Xiao-Feng LI ; Jia-Rong MAO ; Ke-Jun REN ; Lei GAO ; Li YANG ; You-Wan WU ; Yong-Jun WANG
Chinese journal of integrative medicine 2018;24(8):600-605
OBJECTIVETo evaluate the renal protective effect of Tangshenkang Granule () in a rat model of diabetic nephropathy (DN).
METHODSForty male Sprague-Dawley rats were randomly divided into control, DN, Tangshenkang and benazepril groups. DN model was established in the rats of DN, Tangshenkang and benazepril groups. Tangshenkang Granule solution and benazepril hydrochloride solution were intragastrically administered daily to the rats in the Tangshenkang and benazepril groups for 8 weeks, respectively. Urinary albumin and creatinine were detected. The albumin/creatinine (ACR) was calculated in addition to 24 h urinary protein (24-h UPr), serum creatinine (Scr), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and creatinine clearance rate (Ccr). Right kidneys were harvested for pathological observation using periodic acid-silver methenamine-Masson staining. The average glomerular diameter (DG), average glomerular (AG) and mesangial areas (AM) were measured. The thickness of glomerular basement membrane (TGBM) was detected using transmission electron microscope.
RESULTSCompared with rats in the control group, rats in the DN group showed significantly decreased body weight, increased hypertrophy index, 24-h urinary volume, 24-h UPr, ACR, Scr, BUN, Ccr, blood lipids as well as renal pathological indices including DG, AG, AM, AM/AG and TGBM (P <0.05). Compared with the DN group, the weights of rats in the Tangshenkang and benazepril groups were significantly increased, and the renal hypertrophy indices were significantly decreased (P <0.05). The 24-h urinary volumes, ACR, 24-h UPr, Scr, BUN, Ccr, LDL, DG, AG, AM and TGBM were obviously decreased (P <0.05). Compared with the benazepril group, the Tangshenkang group showed significantly decreased levels of ACR, 24-h UPr, AG and AM (P <0.05).
CONCLUSIONSTangshenkang Granule decreased the urinary protein, attenuated the high glomerular filtration rate and improved lipid metabolism in DN rats, and prevented further injury induced by diabetic nephropathy.
Albuminuria ; complications ; Animals ; Basement Membrane ; drug effects ; metabolism ; Blood Urea Nitrogen ; Body Weight ; drug effects ; Creatinine ; blood ; urine ; Diabetic Nephropathies ; blood ; drug therapy ; physiopathology ; urine ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Hypertrophy ; Kidney Function Tests ; Kidney Glomerulus ; drug effects ; pathology ; physiopathology ; Lipid Metabolism ; drug effects ; Lipids ; blood ; Male ; Rats, Sprague-Dawley
5.Pathomechanisms of pericyte-myofibroblast transition in kidney and interventional effects of Chinese herbal medicine.
Ying-Lu LIU ; Ge SHI ; Dong-Wei CAO ; Yi-Gang WAN ; Wei WU ; Yue TU ; Bu-Hui LIU ; Wen-Bei HAN ; Jian YAO
China Journal of Chinese Materia Medica 2018;43(21):4192-4197
In the kidney, pericyte is the major source of myofibroblast (MyoF) in renal interstitium. It is reported that pericyte-myofibroblast transition(PMT)is one of the important pathomechanisms of renal interstitial fibrosis(RIF). Among them, the main reasons for promoting RIF formation include pericyte recruitment, activation and isolation, as well as the lack of pericyte-derived erythropoietin. During the PMT startup process, pericyte activation and its separation from microvessels are controlled by multiple signal transduction pathways, such as transforming growth factor-β(TGF-β)pathway, vascular endothelial growth factor receptor (VEGFR) pathway and platelet derived growth factor receptor (PDGFR) pathway;Blocking of these signaling pathways can not only inhibit PMT, but also suppress renal capillaries reduction and further alleviate RIF. In clinic, many traditional Chinese medicine compound prescriptions, single traditional Chinese herbal medicine (CHM) and their extracts have the clear effects in alleviating RIF, and some of their intervention actions may be related to pericyte and its PMT. Therefore, the studies on PMT and its drug intervention will become the main development direction in the research field of anti-organ fibrosis by CHM.
Drugs, Chinese Herbal
;
pharmacology
;
Fibrosis
;
Humans
;
Kidney
;
cytology
;
drug effects
;
pathology
;
Myofibroblasts
;
cytology
;
Pericytes
;
cytology
;
Receptors, Platelet-Derived Growth Factor
;
metabolism
;
Signal Transduction
;
Vascular Endothelial Growth Factor A
;
metabolism
6.Huaiqihuang Granules () reduce proteinuria by enhancing nephrin expression and regulating necrosis factor κB signaling pathway in adriamycin-induced nephropathy.
Hong LIU ; Wei SUN ; Liu-Bao GU ; Yue TU ; Bing-Yin YU ; Hao HU
Chinese journal of integrative medicine 2017;23(4):279-287
OBJECTIVETo investigate the effects of Huaiqihuang Granules (, HQH), a mixture of Chinese herbs including Trametes robiniophila Murr, Fructus Lycii and Polygonatum sibiricum, on adriamycininduced nephropathy (ADRN) in rats and its underlying mechanisms.
METHODSRats with ADRN were divided into four groups: the sham group, the model group (distilled water), the low-dose HQH-treated (2 g/kg) group, and the high-dose HQH-treated (4 g/kg) group. Body weight and 24-h urinary protein (Upro) were checked every week. After 5-week intervention, at the end of the study, the rats were sacrificed and blood samples were collected for examination of biochemical parameters, including glomerular morphological makers, podocyte shape, cellular apoptosis, expressions of nephrin, inflammatory and apoptosis markers.
RESULTSHQH ameliorated the rat's general status, proteinuria, renal morphological appearance and glomerulosclerosis. The decreased expression of nephrin in ADRN rats was increased by HQH, as well as the impaired podocyte foot process fusion. Cytosolic levels of p65 and inhibitor of nuclear factor κBα (IκBα) were decreased in ADRN rats, and recovered by the treatment of HQH. Consistently, the induced expression of tumor necrosis factor α (TNF-α), phosphorylated nuclear factor κB p65 (p-NFκB p65) and IκBα in ADRN were markedly suppressed by HQH. In addition, induction of Bax, cleaved caspase-3 and cytochrome C in ADRN rats were suppressed by HQH, indicating the amelioration of apoptosis.
CONCLUSIONHQH could ameliorate renal impairments in ADRN rats by increasing nephrin expression, inhibiting NF-κB signaling pathway via the down-regulation of p-NF-κB p65 and p-IκBα, and suppression of glomerular and tubular apoptosis.
Animals ; Apoptosis ; drug effects ; Body Weight ; drug effects ; Caspase 3 ; metabolism ; Chromatography, High Pressure Liquid ; Cytochromes c ; metabolism ; Doxorubicin ; adverse effects ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Kidney ; drug effects ; pathology ; Kidney Diseases ; blood ; chemically induced ; complications ; drug therapy ; Kidney Glomerulus ; drug effects ; pathology ; ultrastructure ; Kidney Tubules ; drug effects ; pathology ; ultrastructure ; Male ; Membrane Proteins ; metabolism ; NF-KappaB Inhibitor alpha ; metabolism ; NF-kappa B ; metabolism ; Organ Size ; drug effects ; Proteinuria ; blood ; complications ; drug therapy ; Rats, Sprague-Dawley ; Signal Transduction ; drug effects ; Transcription Factor RelA ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism ; bcl-2-Associated X Protein ; metabolism
7.Concomitant inhibition of renin angiotensin system and Toll-like receptor 2 attenuates renal injury in unilateral ureteral obstructed mice.
Sarah CHUNG ; Jin Young JEONG ; Yoon Kyung CHANG ; Dae Eun CHOI ; Ki Ryang NA ; Beom Jin LIM ; Kang Wook LEE
The Korean Journal of Internal Medicine 2016;31(2):323-334
BACKGROUND/AIMS: There has been controversy about the role of Toll-like receptor 2 (TLR2) in renal injury following ureteric obstruction. Although inhibition of the renin angiotensin system (RAS) reduces TLR2 expression in mice, the exact relationship between TLR2 and RAS is not known. The aim of this study was to determine whether the RAS modulates TLR2. METHODS: We used 8-week-old male wild type (WT) and TLR2-knockout (KO) mice on a C57Bl/6 background. Unilateral ureteral obstruction (UUO) was induced by complete ligation of the left ureter. Angiotensin (Ang) II (1,000 ng/kg/min) and the direct renin inhibitor aliskiren (25 mg/kg/day) were administrated to mice using an osmotic minipump. Molecular and histologic evaluations were performed. RESULTS: Ang II infusion increased mRNA expression of TLR2 in WT mouse kidneys (p < 0.05). The expression of renin mRNA in TLR2-KO UUO kidneys was significantly higher than that in WT UUO kidneys (p < 0.05). There were no differences in tissue injury score or mRNA expression of monocyte chemotactic protein 1 (MCP-1), osteopontin (OPN), or transforming growth factor beta (TGF-beta) between TLR2-KO UUO and WT UUO kidneys. However, aliskiren decreased the tissue injury score and mRNA expression of TLR2, MCP-1, OPN, and TGF-beta in WT UUO kidneys (p < 0.05). Aliskiren-treated TLR2-KO UUO kidneys showed less kidney injury than aliskiren-treated WT UUO kidneys. CONCLUSIONS: TLR2 deletion induced activation of the RAS in UUO kidneys. Moreover, inhibition of both RAS and TLR2 had an additive ameliorative effect on UUO injury of the kidney.
Amides/*pharmacology
;
Angiotensin II/pharmacology
;
Animals
;
Disease Models, Animal
;
Fibrosis
;
Fumarates/*pharmacology
;
Kidney/*drug effects/metabolism/pathology
;
Male
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Nephritis, Interstitial/genetics/metabolism/pathology/*prevention & control
;
RNA, Messenger/genetics/metabolism
;
Renin/*antagonists & inhibitors/metabolism
;
Renin-Angiotensin System/*drug effects
;
Toll-Like Receptor 2/deficiency/drug effects/genetics/*metabolism
;
Ureteral Obstruction/*drug therapy/genetics/metabolism/pathology
8.Protective Effects of Curcumin on Renal Oxidative Stress and Lipid Metabolism in a Rat Model of Type 2 Diabetic Nephropathy.
Bo Hwan KIM ; Eun Soo LEE ; Ran CHOI ; Jarinyaporn NAWABOOT ; Mi Young LEE ; Eun Young LEE ; Hyeon Soo KIM ; Choon Hee CHUNG
Yonsei Medical Journal 2016;57(3):664-673
PURPOSE: Diabetic nephropathy is a serious complication of type 2 diabetes mellitus, and delaying the development of diabetic nephropathy in patients with diabetes mellitus is very important. In this study, we investigated inflammation, oxidative stress, and lipid metabolism to assess whether curcumin ameliorates diabetic nephropathy. MATERIALS AND METHODS: Animals were divided into three groups: Long-Evans-Tokushima-Otsuka rats for normal controls, Otsuka-Long-Evans-Tokushima Fatty (OLETF) rats for the diabetic group, and curcumin-treated (100 mg/kg/day) OLETF rats. We measured body and epididymal fat weights, and examined plasma glucose, adiponectin, and lipid profiles at 45 weeks. To confirm renal damage, we measured albumin-creatinine ratio, superoxide dismutase (SOD), and malondialdehyde (MDA) in urine samples. Glomerular basement membrane thickness and slit pore density were evaluated in the renal cortex tissue of rats. Furthermore, we conducted adenosine monophosphate-activated protein kinase (AMPK) signaling and oxidative stress-related nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling to investigate mechanisms of lipotoxicity in kidneys. RESULTS: Curcumin ameliorated albuminuria, pathophysiologic changes on the glomerulus, urinary MDA, and urinary SOD related with elevated Nrf2 signaling, as well as serum lipid-related index and ectopic lipid accumulation through activation of AMPK signaling. CONCLUSION: Collectively, these findings indicate that curcumin exerts renoprotective effects by inhibiting renal lipid accumulation and oxidative stress through AMPK and Nrf2 signaling pathway.
Albuminuria
;
Animals
;
Anti-Inflammatory Agents, Non-Steroidal/*therapeutic use
;
Curcumin/*pharmacology
;
Diabetes Mellitus, Type 2/*metabolism/urine
;
Diabetic Nephropathies/complications/*drug therapy/metabolism/pathology
;
Gene Expression/drug effects
;
Inflammation
;
Kidney/drug effects/metabolism/physiopathology
;
Kidney Glomerulus/metabolism/physiopathology
;
Lipid Metabolism/*drug effects
;
Male
;
Malondialdehyde/metabolism/urine
;
Oxidative Stress/*drug effects
;
Rats
;
Rats, Inbred OLETF
;
Rats, Long-Evans
;
Superoxide Dismutase/metabolism
9.Vitamin C Attenuates Hemorrhagic Shock-induced Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Nonintegrin Expression in Tubular Epithelial Cells and Renal Injury in Rats.
Li MA ; Jian FEI ; Ying CHEN ; Bing ZHAO ; Zhi-Tao YANG ; Lu WANG ; Hui-Qiu SHENG ; Er-Zhen CHEN ; En-Qiang MAO
Chinese Medical Journal 2016;129(14):1731-1736
BACKGROUNDThe expression of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) in renal tubular epithelial cells has been thought to be highly correlated with the occurrence of several kidney diseases, but whether it takes place in renal tissues during hemorrhagic shock (HS) is unknown. The present study aimed to investigate this phenomenon and the inhibitory effect of Vitamin C (VitC).
METHODSA Sprague-Dawley rat HS model was established in vivo in this study. The expression level and location of DC-SIGN were observed in kidneys. Also, the degree of histological damage, the concentrations of tumor necrosis factor-μ and interleukin-6 in the renal tissues, and the serum concentration of blood urea nitrogen and creatinine at different times (2-24 h) after HS (six rats in each group), with or without VitC treatment before resuscitation, were evaluated.
RESULTSHS induced DC-SIGN expression in rat tubular epithelial cells. The proinflammatory cytokine concentration, histological damage scores, and functional injury of kidneys had increased. All these phenomena induced by HS were relieved when the rats were treated with VitC before resuscitation.
CONCLUSIONSThe results of the present study illustrated that HS could induce tubular epithelial cells expressing DC-SIGN, and the levels of proinflammatory cytokines in the kidney tissues improved correspondingly. The results also indicated that VitC could suppress the DC-SIGN expression in the tubular epithelial cells induced by HS and alleviate the inflammation and functional injury in the kidney.
Animals ; Ascorbic Acid ; therapeutic use ; Blotting, Western ; Cell Adhesion Molecules ; metabolism ; Epithelial Cells ; drug effects ; metabolism ; pathology ; Immunohistochemistry ; Kidney Tubules ; drug effects ; metabolism ; pathology ; Lectins, C-Type ; metabolism ; Male ; Rats ; Rats, Sprague-Dawley ; Receptors, Cell Surface ; metabolism ; Shock, Hemorrhagic ; complications ; drug therapy ; metabolism
10.Panax notoginseng saponins protect kidney from diabetes by up-regulating silent information regulator 1 and activating antioxidant proteins in rats.
Yue-Guang DU ; Li-Pei WANG ; Jun-Wen QIAN ; Ke-Na ZHANG ; Ke-Fu CHAI
Chinese journal of integrative medicine 2016;22(12):910-917
OBJECTIVETo explore the mechanism of the protective effects of Panax notoginseng saponins (PNS) on kidney in diabetic rats.
METHODSDiabetic rat model was obtained by intravenous injection of alloxan, and the rats were divided into model, PNS-100 mg/(kg day) and PNS-200 mg/(kg day) groups, 10 each. Another 10 rats injected with saline were served as control. Periodic acid-Schiff staining and immunological histological chemistry were used to observe histomorphology and tissue expression of bone morphogenetic protein-7 (BMP-7). Silent information regulator 1 (SIRT1) was silenced in rat mesangial cells by RNA interference. The mRNA expressions of SIRT-1, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1) were analyzed by reverse transcription polymerase chain reaction. The protein expressions of SIRT1 and the acetylation of nuclear factor κB (NF-κB) P65 were determined by western blotting. The concentration of MCP-1, TGF-β1 and malondialdehyde (MDA) in culture supernatant were detected by enzyme-linked immuno sorbent assay. The activity of superoxide dismutase (SOD) was detected by the classical method of nitrogen and blue four.
RESULTSIn diabetic model rats, PNS could not only reduce blood glucose and lipid (P<0.01), but also increase protein level of BMP-7 and inhibit PAI-1 expression for suppressing fibrosis of the kidney. In rat mesangial cells, PNS could up-regulate the expression of SIRT1 (P<0.01) and in turn suppress the transcription of TGF-β1 (P<0.05) and MCP-1 (P<0.05). PNS could also reverse the increased acetylation of NF-κB p65 by high glucose. In addition, redox regulation factor MDA was down-regulated (P<0.05) and SOD was up-regulated (P<0.01), which were both induced by SIRT1 up-regulation.
CONCLUSIONSPNS could protect kidney from diabetes with the possible mechanism of up-regulating SIRT1, therefore inhibiting inflammation through decreasing the induction of inflammatory cytokines and TGF-β1, as well as activating antioxidant proteins.
Acetylation ; drug effects ; Animals ; Antioxidants ; metabolism ; Blood Glucose ; metabolism ; Bone Morphogenetic Protein 7 ; metabolism ; Chemokine CCL2 ; metabolism ; Diabetes Mellitus, Experimental ; blood ; drug therapy ; genetics ; physiopathology ; Gene Knockdown Techniques ; Immunohistochemistry ; Kidney ; drug effects ; pathology ; Kidney Function Tests ; Lipids ; blood ; Male ; Malondialdehyde ; metabolism ; Mesangial Cells ; drug effects ; metabolism ; Oxidative Stress ; drug effects ; Panax notoginseng ; chemistry ; Plasminogen Activator Inhibitor 1 ; genetics ; metabolism ; Protective Agents ; pharmacology ; therapeutic use ; Rats, Sprague-Dawley ; Saponins ; pharmacology ; therapeutic use ; Sirtuin 1 ; genetics ; Superoxide Dismutase ; metabolism ; Transcription Factor RelA ; metabolism ; Transcription, Genetic ; drug effects ; Transforming Growth Factor beta1 ; metabolism ; Up-Regulation ; drug effects

Result Analysis
Print
Save
E-mail