1.Ketanserin and Naftopidil Enhance the Potentiating Effect of Alpha-Methyl-Serotonin on the Neurally-Induced Contraction of Human Isolated Urinary Bladder Muscle Strips.
Tsuyoshi HATTORI ; Philippe LLUEL ; Céline ROUGET ; Moèz REKIK ; Mitsuharu YOSHIYAMA
International Neurourology Journal 2017;21(1):20-28
PURPOSE: The aim of this study was to assess the potential involvement of a specific subtype of 5-hydroxytryptamine (5-HT), 5HT(2) receptors in neurally-induced contractions of the human detrusor. METHODS: Contractile responses to electrical field stimulation (EFS) were examined in human isolated urinary bladder muscle strips. The potentiation of EFS-induced detrusor contraction was examined by adding cumulative concentrations of a 5-HT and 5-HT(2) receptor agonist, α-methyl-serotonin (α-Me-5-HT) (1nM–100μM) in the presence or absence of a 5-HT₂ antagonist, ketanserin (5-HT(2A)>5-HT(2C)) or naftopidil (5-HT(2B)>5-HT(2A)) (0.3–3μM). RESULTS: 5-HT and α-Me-5-HT potentiated EFS-induced contraction with a maximal effect (E(max)) of 37.6% and 38.6%, respectively, and with pEC(50) (negative logarithm of the concentration required for a half-maximal response to an agonist) values of 8.3 and 6.8, respectively. Neither ketanserin nor naftopidil at any concentration produced a rightward displacement of the α-Me-5-HT concentration response curve. Instead, the E(max) of α-Me-5-HT increased in the presence of ketanserin at 0.3–1μM and in the presence of naftopidil at 1μM to 51% and 56%, respectively, while the E(max) in the presence of vehicle alone was 36%. The highest concentration (3μM) of either drug, however, fully reversed the enhancement. CONCLUSIONS: The potentiating effect of α-Me-5-HT on neurally-induced contraction of human urinary bladder muscle strips was not found to be mediated via any 5-HT(2) receptor subtypes. The underlying mechanism for the enhancement of the α-Me-5-HT potentiating effect on detrusor contractility by ketanserin and naftopidil remains unknown; however, our results suggest that these drugs may be useful for treating contractile dysfunction of the detrusor, as manifested in conditions such as underactive bladder.
Humans*
;
Ketanserin*
;
Prostatism
;
Receptors, Adrenergic, alpha-1
;
Receptors, Serotonin
;
Serotonin
;
Urinary Bladder Neck Obstruction
;
Urinary Bladder*
2.Glucosylsphingosine Activates Serotonin Receptor 2a and 2b: Implication of a Novel Itch Signaling Pathway.
Biomolecules & Therapeutics 2017;25(5):497-503
Recent reports claimed that glucosylsphingosine (GS) is highly accumulated and specifically evoking itch-scratch responses in the skins of atopic dermatitis (AD) patients. However, it was unclear how GS can trigger itch-scratch responses, since there were no known molecular singling pathways revealed yet. In the present study, it was verified for the first time that GS can activate mouse serotonin receptor 2a (mHtr2a) and 2b (mHtr2b), but not 2c (mHtr2c) that are expressed in HEK293T cells. Specifically, effects of GS on all mouse serotonin receptor 2 subfamily were evaluated by calcium imaging techniques. The GS-induced intracellular calcium increase was dose-dependent, and antagonists such as ketanserin (Htr2a antagonist) and RS-127445 (Htr2b antagonist) significantly blocked the GS-induced responses. Moreover, the proposed GS-induced responses appear to be mediated by phospholipase C (PLC), since pretreatment of a PLC inhibitor U-73122 abolished the GS-induced responses. Additionally, the GS-induced calcium influx is probably mediated by endogenous TRPC ion channels in HEK293T cells, since pretreatment of SKF-96365, an inhibitor for TRPC, significantly suppressed GS-induced response. In conclusion, the present study revealed for the first time that GS can stimulate mHtr2a and mHtr2b to induce calcium influx, by utilizing PLC-dependent pathway afterwards. Considering that GS is regarded as a pruritogen in AD, the present study implicates a novel GS-induced itch signaling pathway.
Animals
;
Calcium
;
Dermatitis, Atopic
;
Humans
;
Ion Channels
;
Ketanserin
;
Mice
;
Serotonin*
;
Skin
;
Type C Phospholipases
3.Facilitation of serotonin-induced contraction of rat mesenteric artery by ketamine.
Sang Woong PARK ; Hyun Ju NOH ; Jung Min KIM ; Bokyung KIM ; Sung Il CHO ; Yoon Soo KIM ; Nam Sik WOO ; Sung Hun KIM ; Young Min BAE
The Korean Journal of Physiology and Pharmacology 2016;20(6):605-611
Ketamine is an anesthetic with hypertensive effects, which make it useful for patients at risk of shock. However, previous ex vivo studies reported vasodilatory actions of ketamine in isolated arteries. In this study, we reexamined the effects of ketamine on arterial tones in the presence and absence of physiological concentrations of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) by measuring the isometric tension of endothelium-denuded rat mesenteric arterial rings. Ketamine little affected the resting tone of control mesenteric arterial rings, but, in the presence of 5-HT (100~200 nM), ketamine (10~100 µM) markedly contracted the arterial rings. Ketamine did not contract arterial rings in the presence of NE (10 nM), indicating that the vasoconstrictive action of ketamine is 5-HT-dependent. The concentration-response curves (CRCs) of 5-HT were clearly shifted to the left in the presence of ketamine (30 µM), whereas the CRCs of NE were little affected by ketamine. The left shift of the 5-HT CRCs caused by ketamine was reversed with ketanserin, a competitive 5-HT(2A) receptor inhibitor, indicating that ketamine facilitated the activation of 5-HT(2A) receptors. Anpirtoline and BW723C86, selective agonists of 5-HT(1B) and 5-HT(2B) receptors, respectively, did not contract arterial rings in the absence or presence of ketamine. These results indicate that ketamine specifically enhances 5-HT(2A) receptor-mediated vasoconstriction and that it is vasoconstrictive in a clinical setting. The facilitative action of ketamine on 5-HT(2A) receptors should be considered in ketamine-induced hypertension as well as in the pathogenesis of diseases such as schizophrenia, wherein experimental animal models are frequently generated using ketamine.
Animals
;
Arteries
;
Blood Pressure
;
Humans
;
Hypertension
;
Ketamine*
;
Ketanserin
;
Mesenteric Arteries*
;
Models, Animal
;
Norepinephrine
;
Rats*
;
Receptor, Serotonin, 5-HT2A
;
Schizophrenia
;
Serotonin
;
Shock
;
Vasoconstriction
4.Effects of blockade of 5-HT2A receptors in inflammatory site on complete Freund's adjuvant-induced chronic hyperalgesia and neuropeptide Y expression in the spinal dorsal horn in rats.
Bing-Qing HUANG ; Bing WU ; Yanguo HONG ; Wei HU
Acta Physiologica Sinica 2015;67(5):463-469
5-hydroxytryptamine (5-HT) released in inflammatory tissues plays a pivotal role in pain hypersensitivity. However, it is not clear whether 5-HT2A receptors in the inflamed tissues mediate this effect. The present study investigated the contribution of 5-HT2A receptors in the periphery to chronic inflammatory pain. Complete Freund's adjuvant (CFA) was injected subcutaneously in the hindpaw of rats. The selective 5-HT2A receptor antagonist ketanserin was given in the inflamed site. Paw withdrawal latency responding to heat or mechanical stimuli was measured. Expression of neuropeptide Y (NPY) in the spinal dorsal horn and dorsal root ganglia (DRG) was assayed using immunohistochemistry technique. The results showed that ketanserin administered in the inflamed site inhibited thermal hyperalgesia in a dose-dependent manner (20, 40 and 80 µg) induced by the intraplantar injection of CFA. Ketanserin given once per day at a dose of 80 µg abolished heat hyperalgesia and also attenuated mechanical allodynia on the third day. CFA injection increased the expression of NPY in superficial laminae of the spinal cord, but not in the DRG. The local treatment of ketanserin completely inhibited CFA-induced increase in NPY expression in superficial laminae of the spinal cord. These results indicated that activation of 5-HT2A receptors in the inflamed tissues was involved in the pathogenesis of inflammatory pain and the blockade of 5-HT2A receptors in the periphery could relieve pain hypersensitivity and normalize the cellular disorder in the spinal dorsal horn associated with pathological pain. The present study suggests that the peripheral 5-HT2A receptors can be a promising target for pharmaceutical therapy to treat chronic inflammatory pain without central nervous system side effects.
Animals
;
Freund's Adjuvant
;
adverse effects
;
Ganglia, Spinal
;
metabolism
;
Hot Temperature
;
Hyperalgesia
;
chemically induced
;
drug therapy
;
Inflammation
;
drug therapy
;
Ketanserin
;
pharmacology
;
Neuropeptide Y
;
metabolism
;
Pain
;
drug therapy
;
Pain Measurement
;
Rats
;
Receptor, Serotonin, 5-HT2A
;
metabolism
;
Serotonin
;
Serotonin 5-HT2 Receptor Antagonists
;
pharmacology
;
Spinal Cord Dorsal Horn
;
metabolism
5.Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase.
Dong Jun SUNG ; Hyun Ju NOH ; Jae Gon KIM ; Sang Woong PARK ; Bokyung KIM ; Hana CHO ; Young Min BAE
Experimental & Molecular Medicine 2013;45(12):e67-
Serotonin (5-hydroxytryptamine (5-HT)) is a neurotransmitter that regulates a variety of functions in the nervous, gastrointestinal and cardiovascular systems. Despite such importance, 5-HT signaling pathways are not entirely clear. We demonstrated previously that 4-aminopyridine (4-AP)-sensitive voltage-gated K+ (Kv) channels determine the resting membrane potential of arterial smooth muscle cells and that the Kv channels are inhibited by 5-HT, which depolarizes the membranes. Therefore, we hypothesized that 5-HT contracts arteries by inhibiting Kv channels. Here we studied 5-HT signaling and the detailed role of Kv currents in rat mesenteric arteries using patch-clamp and isometric tension measurements. Our data showed that inhibiting 4-AP-sensitive Kv channels contracted arterial rings, whereas inhibiting Ca2+-activated K+, inward rectifier K+ and ATP-sensitive K+ channels had little effect on arterial contraction, indicating a central role of Kv channels in the regulation of resting arterial tone. 5-HT-induced arterial contraction decreased significantly in the presence of high KCl or the voltage-gated Ca2+ channel (VGCC) inhibitor nifedipine, indicating that membrane depolarization and the consequent activation of VGCCs mediate the 5-HT-induced vasoconstriction. The effects of 5-HT on Kv currents and arterial contraction were markedly prevented by the 5-HT2A receptor antagonists ketanserin and spiperone. Consistently, alpha-methyl 5-HT, a 5-HT2 receptor agonist, mimicked the 5-HT action on Kv channels. Pretreatment with a Src tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, prevented both the 5-HT-mediated vasoconstriction and Kv current inhibition. Our data suggest that 4-AP-sensitive Kv channels are the primary regulator of the resting tone in rat mesenteric arteries. 5-HT constricts the arteries by inhibiting Kv channels via the 5-HT2A receptor and Src tyrosine kinase pathway.
4-Aminopyridine/pharmacology
;
Action Potentials
;
Animals
;
Calcium Channel Blockers/pharmacology
;
Calcium Channels/metabolism
;
Cells, Cultured
;
Ketanserin/pharmacology
;
Male
;
Mesenteric Arteries/drug effects/*metabolism/physiology
;
Muscle Contraction
;
Muscle, Smooth, Vascular/cytology/drug effects/metabolism/physiology
;
Myocytes, Smooth Muscle/drug effects/metabolism/physiology
;
Nifedipine/pharmacology
;
Potassium Channel Blockers/pharmacology
;
Potassium Channels, Voltage-Gated/antagonists & inhibitors/*metabolism
;
Protein Kinase Inhibitors/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Serotonin, 5-HT2A/*metabolism
;
Serotonin/*pharmacology
;
Serotonin 5-HT2 Receptor Antagonists/pharmacology
;
Spiperone/pharmacology
;
*Vasoconstriction
;
src-Family Kinases/antagonists & inhibitors/*metabolism
6.Characteristics of 5-Hydroxytryptamine Receptors Involved in Contraction of Feline Ileal Longitudinal Smooth Muscle.
YiYi WANG ; Sun Young PARK ; Kyung Hoon OH ; Youngsil MIN ; Yun Jeong LEE ; Seok Yong LEE ; Uy Dong SOHN
The Korean Journal of Physiology and Pharmacology 2011;15(5):267-272
A number of studies have demonstrated that 5-hydroxytryptamine (5-HT) can induce muscle contraction or relaxation response and enhance secretion in the gastrointestinal tract via a multiplicity of 5-HT receptor subtypes. In the present study, we investigated the pharmacological characterization of the 5-HT-induced contractile response in longitudinal smooth muscle isolated from the feline ileum. Addition of 5-HT into muscle chambers enhanced the basal tone and spontaneous activity in a concentration-dependent manner. The neurotoxin tetrodotoxin did not alter the 5-HT-induced contraction of the longitudinal muscles. Neither atropine nor guanethidine affected the contraction. The 5-HT agonists, 5-methylserotonin hydrochloride and mosapride, also evoked concentration-dependent contractions. The 5-HT-induced contraction was enhanced by the 5HT2 receptor antagonist ketanserin and the 5-HT3 receptor antagonist ondansetron but was inhibited by the 5-HT1 receptor antagonist methysergide and 5-HT4 receptor antagonist GR113808. These results indicate that 5-HT1 and 5-HT4 receptors may mediate the contraction of the 5-HT-induced response and 5-HT2 and 5-HT3 receptors may mediate 5-HT-induced relaxation in feline ileal longitudinal smooth muscles.
Atropine
;
Benzamides
;
Contracts
;
Gastrointestinal Tract
;
Guanethidine
;
Ileum
;
Indoles
;
Ketanserin
;
Methysergide
;
Morpholines
;
Muscle Contraction
;
Muscle, Smooth
;
Muscles
;
Ondansetron
;
Receptors, Serotonin
;
Receptors, Serotonin, 5-HT1
;
Receptors, Serotonin, 5-HT3
;
Receptors, Serotonin, 5-HT4
;
Relaxation
;
Serotonin
;
Serotonin Receptor Agonists
;
Sulfonamides
;
Tetrodotoxin
7.High extracellular potassium ion concentration attenuates the blockade action of ketanserin on Kv1.3 channels expressed in xenopus oocytes.
Zhen-tao LIANG ; Xian-pei WANG ; Qiu-tang ZENG ; Yu-hua LIAO ; An-ruo ZOU ; Lu LI ; Dan-na TU
Chinese Medical Journal 2008;121(24):2584-2591
BACKGROUNDKetanserin (KT), a selective serotonin (5-HT) 2-receptor antagonist, reduces peripheral blood pressure by blocking the activation of peripheral 5-HT receptors. In this study electrophysiological method was used to investigate the effect of KT and potassium ion on Kv1.3 potassium channels and explore the role of blocker KT in the alteration of channel kinetics contributing to the potassium ion imbalances.
METHODSKv1.3 channels were expressed in xenopus oocytes, and currents were measured using the two-microelectrode voltage-clamp technique.
RESULTSKCl made a left shift of activation and an inactivation curve of Kv1.3 current and accelerated the activation and inactivation time constant. High extracellular [K(+)] attenuated the blockade effect of KT on Kv1.3 channels. In the presence of KT and KCl the activation and inactivation time constants were not influenced significantly no matter what was administered first. KT did not significantly inhibit Kv1.3 current induced by tetraethylammonium (TEA).
CONCLUSIONSKT is a weak blocker of Kv1.3 channels at different concentrations of extracellular potassium and binds to the intracellular side of the channel pore. The inhibitor KT of ion channels is not fully effective in clinical use because of high [K(+)](o) and other electrolyte disorders.
Animals ; Electrophysiology ; Female ; Ketanserin ; pharmacology ; Kv1.3 Potassium Channel ; drug effects ; metabolism ; Oocytes ; Patch-Clamp Techniques ; Potassium ; pharmacology ; Serotonin Antagonists ; pharmacology ; Xenopus laevis
8.Blockade of the human ether-a-go-go-related gene potassium channel by ketanserin.
Dan-Na TU ; An-Ruo ZOU ; Yu-Hua LIAO ; Yi-Mei DU ; Xian-Pei WANG ; Lu LI
Acta Physiologica Sinica 2008;60(4):525-534
In the present study, we investigated the inhibitory action of ketanserin on wild-type (WT) and Y652 mutant human ether-a-go-go-related gene (HERG) potassium channels expressed in Xenopus oocytes and the effects of changing the channel molecular determinants characteristics on the blockade with and without ketanserin intervention using standard two-microelectrode voltage-clamp techniques. Point mutations were introduced into HERG gene (Y652A and Y652R) and subcloned into the pSP64 plasmid expression vector. Complementary RNAs for injection into oocytes were prepared with SP6 Cap-Scribe after linearization of the expression construct with EcoR I. Clampfit 9.2 software was employed for data collection and analysis. Origin 6.0 software was used to fit the data, calculate time constants and plot histograms. The results showed that ketanserin blocked WT HERG currents in voltage- and concentration-dependent manner and showed minimal tonic blockade of HERG current evaluated by the envelope of tails test. The IC50 value was (0.38+/-0.04) micromol/L for WT HERG potassium channel. The peaks of the I-V relationship for HERG channel suggested a negative shift in the voltage-dependence of activation after using ketanserin, whose midpoint of activation values (V1/2) were (-16.59+/-1.01) mV (control) vs (-20.59+/-0.87) mV (ketanserin) at 0.1 micromol/L, (-22.39+/-0.94) mV at 1 micromol/L, (-23.51+/-0.91) mV at 10 micromol/L, respectively (P<0.05, n=6). Characteristics of blockade were consistent with an open-state channel blockade, because the extent and rate of onset of blockade was voltage-dependent, increasing at more potentials even in the condition of leftward shift of activation curve. Meanwhile, in the different depolarization duration, the fractional blockade of end-pulse step current and peak tail current at 100 ms duration was significantly lower than that at 400 ms and 700 ms, which indicated that following the channel activation fractional blockade was enhanced by the activated channels. Ketanserin could also modulate the inactivation of HERG channel, which shifted the voltage-dependence of WT HERG channel inactivation curve from (-51.71+/-2.15) mV to (-80.76+/-14.98) mV (P<0.05, n=4). The S6 mutation, Y652A and Y652R, significantly attenuated the blockade by ketanserin. The IC50 value were (27.13+/-9.40) micromol/L and (20.20+/-2.80) micromol/L, respectively, increased by approximately 72-fold for Y652A and 53-fold for Y652R compared to that of WT HERG channel blockade [(0.38+/-0.04) micromol/L]. However, between the inhibitory effects of Y652A and Y652R, there was no significant difference. In conclusion, ketanserin blocks WT HERG currents in voltage- and concentration-dependent manner and preferentially blocks open-state HERG channels. Tyr-652 is one of the critical residues in the ketanserin-binding sites.
Animals
;
Ether-A-Go-Go Potassium Channels
;
antagonists & inhibitors
;
Humans
;
Ketanserin
;
pharmacology
;
Mutation
;
Oocytes
;
Patch-Clamp Techniques
;
Potassium Channel Blockers
;
pharmacology
;
Xenopus
9.Preventive Effect of Serotonergic Drugs on LPS-Induced Acute Anorexia in Rats.
So Young PARK ; Keon Ho KIM ; Dong Kuk AHN ; Tae Im PARK ; Jong Yeon KIM ; Yong Woon KIM ; Dong Chul LEE ; Suck Kang LEE
The Korean Journal of Physiology and Pharmacology 2005;9(3):149-153
The aim of the present study was to determine whether serotonergic drugs could reverse lipopolysaccharide (LPS) -induced anorexia in rats. LPS (500microgram/kg body weight) and all serotonergic drugs, except for 8-OH-DPAT (subcutaneous), were injected intraperitoneally into Sprague-Dawley rats. Without the LPS injection, 8-OH-DPAT (1A agonist), metergoline (1/2 antagonist), and mianserin (2A/2C antagonist) exerted no effects on food intake at any of the doses tested, but ketanserin (2A antagonist) caused an increase of food intake at 4 mg/kg. RS-102221 (2C antagonist) reduced food intake at 2 and 4 mg/kg. LPS reduced food intake 1 hour after injection, and food intake remained low until the end of measurement period (24 hours) (p< 0.05). Pretreatment of rats with 8-OH-DPAT partially recovered of cumulative food intake at all measured times (2, 4, 6, 8, and 24 hours after LPS injection). Pretreatment with metergoline resulted in a partial recovery of cumulative food intake at 2, 4, 6, and 8 hours, but not at 24 hours. Ketanserin caused partial recovery at 2 and 4 hours only. Mianserin and RS-102221 had no effects on LPS-reduced food intake. A variety of serotonergic drugs ameliorated anorexic symptoms, which suggesting that the serotonin system plays a role in LPS-induced anorexia.
8-Hydroxy-2-(di-n-propylamino)tetralin
;
Animals
;
Anorexia*
;
Diethylpropion
;
Eating
;
Ketanserin
;
Metergoline
;
Mianserin
;
Rats*
;
Rats, Sprague-Dawley
;
Serotonin
;
Serotonin Agents*
10.The Role of 5-HT Receptors on the Acetylcholine Release from the Rat Striatum.
Yeong Hwa JOO ; Kyu Yong JUNG ; Bong Kyu CHOI
Korean Journal of Psychopharmacology 2001;12(2):140-146
The aim of this study was to investigate the role of the 5-HT receptors in acetylcholine (ACh) release from the striatum. Slices from the rat striatum and synaptosomes were incubated with [3H]-choline and the release of the labelled products was evoked by electrical (3 Hz, 2 ms, 5 V/cm, rectangular pulses, 2 min) and potassium-stimulation (25 mM), respectively, and the influence of various serotonergic drugs on the evoked tritium outflows was investigated. Serotonin decreased the electrically-evoked ACh release in striatum in a concentration-dependent manner without the change of basal release. In hippocampal and entorhinal cortical slices, serotonin did not affect the evoked and basal release of ACh, but, at large dose (30 microM) decreased the evoked ACh release in hippocampus. 2,5-Dimethoxy-4-iodoamphetamine (DOI), a specific 5-HT 2A/2C agonist, decreased evoked ACh release in the striatum. CGS-12066A (5-HT 1B agonist), m-chlorophenyl-biguanide (5-HT 3 agonist) and 5-[(dimethyl -amino)methyl]-3-(1-methyl-1H-indol-3-yl)-1,2,4-oxadiazole (5-HT 3 antagonist) did not affect the evoked and basal ACh release in all tissues. Ritanserin, a specific 5-HT 2A/2C antagonist, blocked the inhibitory effects of serotonin and DOI, whereas, ketanserin, an another type of specific 5-HT 2A/2C antagonist did not affect the inhibitory effects of serotonin and DOI. In striatal synaptosomal preparation, serotonin and DOI did not affect the K +-evoked ACh release. These findings suggest that ritanserin-sensitive 5-HT 2A/2C receptors located in the soma and/or axons of the striatal cholinergic neurons play a important role in ACh release.
Acetylcholine*
;
Animals
;
Axons
;
Carisoprodol
;
Cholinergic Neurons
;
Hippocampus
;
Ketanserin
;
Rats*
;
Receptors, Serotonin*
;
Ritanserin
;
Serotonin Agents
;
Serotonin*
;
Synaptosomes
;
Tritium

Result Analysis
Print
Save
E-mail