1.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
2. Research progress of Parkin protein regulating mitochondrial homeostasis through ubiquitination in cardiovascular diseases
Ke-Juan LI ; Jian-Shu CHEN ; Yi-Xin XIE ; Jia-Le BU ; Xiao-Wei ZHANG ; Yong-Nan LI
Chinese Pharmacological Bulletin 2024;40(2):224-228
In addition to providing energy for cells, mitochondria also participate in calcium homeostasis, cell information transfer, cell apoptosis, cell growth and differentiation. Therefore, maintaining mitochondrial homeostasis is very crucial for the body to carry out normal life activities. Ubiquitination, a post-translational modification of proteins, is involved in various physiological and pathological processes of cells by regulating mitochondrial homeostasis. However, the mechanism by which ubiquitination regulates mitochondrial homeostasis has not been summarized, especially the effect of Parkin protein on cardiovascular diseases. In this paper, the specific mechanism of mitochondrial homeostasis regulated by ubiquitination of Parkin protein is discussed, and the influence of mitochondrial homeostasis imbalance on cardiovascular diseases is reviewed, with a view to providing potential therapeutic strategies for the clinical treatment of cardiovascular diseases.
3.Research status of quercetin-mediated MAPK signaling pathway in prevention and treatment of osteoporosis
Ke-Xin YUAN ; Xing-Wen XIE ; Ding-Peng LI ; Yi-Sheng JING ; Wei-Wei HUANG ; Xue-Tao WANG ; Hao-Dong YANG ; Wen YAN ; Yong-Wu MA
The Chinese Journal of Clinical Pharmacology 2024;40(9):1375-1379
Quercetin can mediate the activation of mitogen-activated protein kinase(MAPK)signaling pathways to prevent osteoporosis(OP).This paper comprehensively discusses the interrelationship between MAPK and osteoporosis-related cells based on the latest domestic and international research.Additionally,it elucidates the research progress of quercetin in mediating the MAPK signaling pathway for OP prevention.The aim is to provide an effective foundation for the clinical prevention and treatment of OP and the in-depth development of quercetin.
4.Numerical Simulation on Radon Retardation Behavior of Covering Floats in Radon-Containing Water
Yuan Shu LIU ; Li ZHANG ; Jun Yong YE ; Ke Ku DING
Biomedical and Environmental Sciences 2024;37(4):406-417
Objective This study aimed to efficiently reduce the release of radon from water bodies to protect the environment. Methods Based on the sizes of the experimental setup and modular float,computational fluid dynamics(CFD)was used to assess the impact of the area coverage rate,immersion depth,diffusion coefficient,and radon transfer velocity at the gas-liquid interface on radon migration and exhalation of radon-containing water.Based on the numerical simulation results,an estimation model for the radon retardation rate was constructed.The effectiveness of the CFD simulation was evaluated by comparing the experimental and simulated variation values of the radon retardation rate with the coverage area rates. Results The effect of radon transfer velocity on radon retardation in water bodies was minor and insignificant according to the appropriate value;therefore,an estimation model of the radon retardation rate of the coverage of a radon-containing water body was constructed using the synergistic impacts of three factors:area coverage rate,immersion depth,and diffusion coefficient.The deviation between the experimental and simulated results was<4.3%. Conclusion Based on the numerical simulation conditions,an estimation model of the radon retardation rate of covering floats in water bodies under the synergistic effect of multiple factors was obtained,which provides a reference for designing covering floats for radon retardation in radon-containing water.
5.Therapeutic efficacy analysis of endoscopic combined with serological diagnosis strategy and endoscopic in G1 and G2 gastric neuroendocrine neoplasms
Wenyu LI ; Yong LIU ; Yueming ZHANG ; Lizhou DOU ; Shun HE ; Yan KE ; Xudong LIU ; Yumeng LIU ; Hairui WU ; Guiqi WANG
Chinese Journal of Oncology 2024;46(4):326-334
Objective:To investigate the endoscopic combined serological diagnosis strategy for G1 and G2 gastric neuroendocrine neoplasms (G-NENs), and to evaluate the safety, short-term, and long-term efficacy of two endoscopic treatment procedures: endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD).Methods:This study retrospectively analyzed the clinical data of 100 consecutive patients with G-NENs who were hospitalized at the Cancer Hospital of the Chinese Academy of Medical Sciences from January 2011 to October 2023. These patients underwent endoscopic treatment, and propensity score matching (PSM) was used to compare clinicopathological characteristics, as well as short-term and long-term efficacy of lesions in the EMR group and ESD group before and after treatment.Results:Among the 100 patients with G-NENs, the median age was 54 years old. Before surgery, 29 cases underwent endoscopic combined serological examination, and 24 of them (82.2%) had abnormally elevated plasma chromogranin A. The combined diagnostic strategy for autoimmune atrophic gastritis (AIG) achieved a diagnostic accuracy of 100%(22/22). A total of 235 G-NEN lesions were included, with 84 in the ESD group and 151 in the EMR group. The median size of the lesions in the ESD group (5.0 mm) was significantly larger than that in the EMR group (2.0 mm, P<0.001). Additionally, the ESD group had significantly more lesions with pathological grade G2[23.8%(20/84) vs. 1.3%(2/151), P<0.001], infiltration depth reaching the submucosal layer [78.6%(66/84) vs. 51.0%(77/151), P<0.001], and more T2 stage compared to the EMR group[15.5%(13/84) vs. 0.7%(1/151), P<0.001]. After PSM, 49 pairs of lesions were successfully matched between the two groups. Following PSM, there were no significant differences in the en bloc resection rate [100.0%(49/49) vs. 100.0%(49/49)], complete resection rate [93.9%(46/49) vs. 100.0%(49/49)], and complication rate [0(0/49) vs. 4.1%(2/49)] between the two groups. During the follow-up period, no recurrence or distant metastasis was observed in any of the lesions in both groups. Conclusions:The combination of endoscopy and serology diagnostic strategy has the potential to enhance the accuracy of diagnosing G1 and G2 stage G-NENs and their background mucosa. Endoscopic resection surgery (EMR, ESD) is a proven and safe treatment approach for G1 and G2 stage G-NENs.
6.Development and validation of predictive models for esophageal squamous cell carcinoma and its precancerous lesions using terminal motif analysis in circulating cell-free DNA
Siyao LIU ; Zhengqi LI ; Lizhou DOU ; Yueming ZHANG ; Yong LIU ; Yumeng LIU ; Yan KE ; Xudong LIU ; Hairui WU ; Jiangtao CHU ; Shun HE ; Guiqi WANG
Chinese Journal of Oncology 2024;46(6):549-565
Objectives:To develop and validate predictive models for esophageal squamous cell carcinoma (ESCC) using circulating cell-free DNA (cfDNA) terminal motif analysis. The goal was to improve the non-invasive detection of early-stage ESCC and its precancerous lesions.Methods:Between August 2021 and November 2022, we prospectively collected plasma samples from 448 individuals at the Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences for cfDNA extraction, library construction, and sequencing. We analyzed 201 cases of ESCC, 46 high-grade intraepithelial neoplasia (HGIN), 46 low-grade intraepithelial neoplasia (LGIN), 176 benign esophageal lesions, and 29 healthy controls. Participants, including ESCC patients and control subjects, were randomly assigned to a training set ( n=284) and a validation set ( n=122). The training cohort underwent z-score normalization of cfDNA terminal motif matrices and a selection of distinctive features differentiated ESCC cases from controls. The random forest classifier, Motif-1 (M1), was then developed through principal component analysis, ten-fold cross-validation, and recursive feature elimination. M1's efficacy was then validated in the validation and precancerous lesion sets. Subsequently, individuals with precancerous lesions were included in the dataset and participants were randomly allocated to newly formed training ( n=243), validation ( n=105), and test ( n=150) cohorts. Using the same procedure as M1, we trained the Motif-2 (M2) random forest model with the training cohort. The M2 model's accuracy was then confirmed in the validation cohort to establish the optimal threshold and further tested by performing validation in the test cohort. Results:We developed two cfDNA terminal motif-based predictive models for ESCC and associated precancerous conditions. The first model, M1, achieved a sensitivity of 90.0%, a specificity of 77.4%, and an area under the curve (AUC) of 0.884 in the validation cohort. For LGIN, HGIN, and T1aN0 stage ESCC, M1's sensitivities were 76.1%, 80.4%, and 91.2% respectively. Notably, the sensitivity for jointly predicting HGIN and T1aN0 ESCC reached 85.0%. Both the predictive accuracy and sensitivity increased in line with the cancer's progression ( P<0.001). The second model, M2, exhibited a sensitivity of 87.5%, a specificity of 77.4%, and an AUC of 0.857 in the test cohort. M2's sensitivities for detecting precancerous lesions and ESCC were 80.0% and 89.7%, respectively, and it showed a combined sensitivity of 89.4% for HGIN and T1aN0 stage ESCC. Conclusions:Two predictive models based on cfDNA terminal motif analysis for ESCC and its precancerous lesions are developed. They both show high sensitivity and specificity in identifying ESCC and its precancerous stages, indicating its potential for early ESCC detection.
7.OCT and IVUS evaluating stent apposition and endothelialization after FD implantation in aneurysm animal models
Ji MA ; Shuhai LONG ; Jie YANG ; Zhen LI ; Haiqiang SANG ; Yi TANG ; Yuncai RAN ; Yong ZHANG ; Baohong WEN ; Shanshan XIE ; Ke CHEN ; Enjie LIU ; Xinwei HAN ; Tengfei LI
Chinese Journal of Neuromedicine 2024;23(3):256-262
Objective:To investigate the application value of optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in evaluating flow diverter (FD) apposition and endothelialization in aneurysm animal models, and analyze the effect of incomplete stent apposition (ISA) on aneurysm lumen healing and stent endothelialization.Methods:Lateral common carotid artery aneurysm models in swines were established by surgical method and then FD was implanted. Immediately after surgery, OCT and IVUS were used to evaluate the locations and degrees of ISA, and difference between these 2 methods in evaluating FD apposition was compared. DSA was performed at 12 weeks after surgery to evaluate the aneurysm occlusion (Kamran grading) and stent patency. OCT and IVUS were used again to observe the stent endothelial situation; by comparing with histopathologic results, effect of ISA on aneurysm healing and stent endothelialization was analyzed.Results:Lateral common carotid artery aneurysm models in 6 swines were established, and 6 Tubridge FDs were successfully implanted. Compared with IVUS (3 stents, 4 locus), OCT could detect more ISA (6 stents, 14 locus); and the vascular diameter change area (7 locus), aneurysm neck area (4 locus) and the head and tail of FD (3 locus) were the main sites of FD malapposition; average distance between stent wire and vessel wall was (560.14±101.48) μm. At 12 weeks after surgery, DSA showed that 1 patient had a little residual contrast agent at the aneurysm neck (Kamran grading 3), and the remaining 5 had complete aneurysm occlusion (Kamran grading 4). One FD had moderate lumen stenosis, and the other 5 FDs had lumen patency. OCT indicated mostly disappeared acute ISA; ISA proportion decreased to 21.4 % (3/14), including 2 in the aneurysm neck and 1 in the partial stent. Histopathological results showed bare stent woven silk, without obvious endothelial coverage; in one FD with luminal stenosis, intimal hyperplasia was mainly composed of vascular smooth muscle cells.Conclusion:In carotid artery aneurysm model with FD implantation, OCT can detect more ISA than IVUS; most acute ISA have good outcome at 12 th week of follow-up, while severe ISA can cause delayed FD endothelialization and delayed aneurysm occlusion.
8.Loong oil-lyotropic liquid crystals for the treatment of combined radiation and burn injury
Wan-ting GUO ; Xue-li JIA ; Yan LIU ; Ya-dan HU ; Ke WANG ; Lei ZHANG ; Yong ZHANG ; Yi-guang JIN
Acta Pharmaceutica Sinica 2024;59(5):1449-1457
Combined radiation and burn injury (CRBI) is a severe syndrome, which is induced by the simultaneous or successive radiation and burn; but no appropriate clinical therapies are available. Loong oil (LO) is a traditional Chinese medicine oil composed of the oil extracts of cuttlebone, safflower, walnut oil, and rapeseed oil, which has been demonstrated to own anti-radiation and tissue healing functions. In this study, glyceryl monostearate (GMO) was used for the preparation of lyotropic liquid crystals that loaded LO to obtain Loong oil-lyotropic liquid crystals (LOL) for the treatment of skin CRBI. The hexagonal phase structure of LOL was proved by small X-ray scattering (SAXS) analysis with an approximate
9.Design,numerical simulation and experimental study of novel oxygenator
Ming-Hao YUE ; Shi-Yao ZHANG ; Ji-Nian LI ; Hui-Chao LIU ; Zi-Hua SU ; Ya-Wei WANG ; Zeng-Sheng CHEN ; Shi-Hang LIN ; Jin-Yu LI ; Ya-Ke CHENG ; Yong-Fei HU ; Cun-Ding JIA ; Ming-Zhou XU
Chinese Medical Equipment Journal 2024;45(3):23-28
Objective To design a novel oxygenator to solve the existing problems of extracorporeal membrane oxygenation(ECMO)machine in high transmembrane pressure difference,low efficiency of blood oxygen exchange and susceptibility to thrombosis.Methods The main body of the oxygenator vascular access flow field was gifted with a flat cylindrical shape.The topology of the vascular access was modeled in three dimensions,and the whole flow field was cut into a blood inlet section,an inlet buffer,a heat exchange zone,a blood oxygen exchange zone,an outlet buffer and a blood outlet section.The oxygenator was compared with Quadrox oxygenator by means of ANSYS FLUENT-based simulation and prototype experiments.Results Simulation calculations showed the oxygenator designed was comparable to the clinically used ones in general,and gained advantages in transmembrane pressure difference,blood oxygen exchange and flow uniformity.Experimental results indicated that the oxygenator behaved better than Quadrox oxygenator in transmembrane pressure difference and blood oxygen exchange.Conclusion The oxygenator has advantages in transmem-brane pressure difference,temperature change,blood oxygen ex-change and low probability of thrombosis.[Chinese Medical Equipment Journal,2024,45(3):23-28]
10.Research progress on the impact of public health and social measures on influenza during the COVID-19 pandemic
Zhourong LI ; Yong ZHAO ; Tingting LI ; Ke JIANG ; Yulong YANG ; Yu XIONG ; Qin LI ; Li QI
Chinese Journal of Preventive Medicine 2024;58(6):924-930
Public health and social measures (PHSMs) are one of the most important measures in the prevention and control of COVID-19 and have also been effective in suppressing the spread of influenza viruses, but their effectiveness has not been fully investigated. This study aimed to review the progress of research on the impact of PHSMs on influenza during the COVID-19 pandemic based on the latest evidence of the effectiveness of various PHSMs in controlling transmission of influenza viruses, to provide scientific evidence for optimizing influenza prevention and control strategies.

Result Analysis
Print
Save
E-mail