1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Carnosic acid inhibits osteoclast differentiation by inhibiting mitochondrial activity
Haishan LI ; Yuheng WU ; Zixuan LIANG ; Shiyin ZHANG ; Zhen ZHANG ; Bin MAI ; Wei DENG ; Yongxian LI ; Yongchao TANG ; Shuncong ZHANG ; Kai YUAN
Chinese Journal of Tissue Engineering Research 2025;29(2):245-253
BACKGROUND:Carnosic acid,a bioactive compound found in rosemary,has been shown to reduce inflammation and reactive oxygen species(ROS).However,its mechanism of action in osteoclast differentiation remains unclear. OBJECTIVE:To investigate the effects of carnosic acid on osteoclast activation,ROS production,and mitochondrial function. METHODS:Primary bone marrow-derived macrophages from mice were extracted and cultured in vitro.Different concentrations of carnosic acid(0,10,15,20,25 and 30 μmol/L)were tested for their effects on bone marrow-derived macrophage proliferation and toxicity using the cell counting kit-8 cell viability assay to determine a safe concentration.Bone marrow-derived macrophages were cultured in graded concentrations and induced by receptor activator of nuclear factor-κB ligand for osteoclast differentiation for 5-7 days.The effects of carnosic acid on osteoclast differentiation and function were then observed through tartrate-resistant acid phosphatase staining,F-actin staining,H2DCFDA probe and mitochondrial ROS,and Mito-Tracker fluorescence detection.Western blot and RT-PCR assays were subsequently conducted to examine the effects of carnosic acid on the upstream and downstream proteins of the receptor activator of nuclear factor-κB ligand-induced MAPK signaling pathway. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining and F-actin staining showed that carnosic acid dose-dependently inhibited in vitro osteoclast differentiation and actin ring formation in the cell cytoskeleton,with the highest inhibitory effect observed in the high concentration group(30 μmol/L).Carnosic acid exhibited the most significant inhibitory effect during the early stages(days 1-3)of osteoclast differentiation compared to other intervention periods.Fluorescence imaging using the H2DCFDA probe,mitochondrial ROS,and Mito-Tracker demonstrated that carnosic acid inhibited cellular and mitochondrial ROS production while reducing mitochondrial membrane potential,thereby influencing mitochondrial function.The results of western blot and RT-PCR revealed that carnosic acid could suppress the expression of NFATc1,CTSK,MMP9,and C-fos proteins associated with osteoclast differentiation,and downregulate the expression of NFATc1,Atp6vod2,ACP5,CTSK,and C-fos genes related to osteoclast differentiation.Furthermore,carnosic acid enhanced the expression of antioxidant enzyme proteins and reduced the generation of ROS during the process of osteoclast differentiation.Overall,carnosic acid exerts its inhibitory effects on osteoclast differentiation by inhibiting the phosphorylation modification of the P38/ERK/JNK protein and activating the MAPK signaling pathway in bone marrow-derived macrophages.
3.Effects of conditioned medium and exosomes of human umbilical cord mesenchymal stem cells on proliferation,migration,invasion,and apoptosis of hepatocellular carcinoma cells
Kai JIN ; Ting TANG ; Meile LI ; Yuan XIE
Chinese Journal of Tissue Engineering Research 2025;29(7):1350-1355
BACKGROUND:Mesenchymal stem cells can regulate the tumor microenvironment by secreting extracellular vesicles containing cytokines,growth factors and exosomes for the precise regulation of biological behavior of tumor cells. OBJECTIVE:To investigate the effects of human umbilical cord-derived mesenchymal stem cell conditioned medium and their released exosomes on the biological properties of hepatocellular carcinoma cells. METHODS:Human umbilical cord mesenchymal stem cell supernatant was collected,centrifuged and filtered at high speed to obtain human umbilical cord mesenchymal stem cell conditioned medium.Human umbilical cord mesenchymal stem cell supernatant was collected and human umbilical cord mesenchymal stem cell exosomes were extracted by ultra-high speed gradient centrifugation.Human umbilical cord mesenchymal stem cell exosomes were labeled with PKH26 and co-cultured with hepatocellular carcinoma cell MHCC97-H.The uptake of exosomes by MHCC97-H cells was observed by fluorescence microscopy.The effects of human umbilical cord mesenchymal stem cell conditioned medium and human umbilical cord mesenchymal stem cell exosomes on biological functions of hepatocellular carcinoma cells were assessed by the CCK-8 proliferation assay,Transwell migration and invasion assay,and the apoptosis assay. RESULTS AND CONCLUSION:(1)Human umbilical cord mesenchymal stem cell exosomes could be uptaken by MHCC97-H cells and was mainly distributed in the cytoplasm.(2)After treatment with human umbilical cord mesenchymal stem cell conditioned medium,MHCC97-H cells showed a significant increase in proliferation,migration,and invasion(P<0.001,P<0.05,P<0.01),and a significant decrease in apoptosis(P<0.001),while after treatment with human umbilical cord mesenchymal stem cell exosomes,MHCC97-H cells showed a decrease in proliferation(P<0.001)and migration,invasion,and apoptosis were significantly enhanced(P<0.001).(3)The results indicated that human umbilical cord mesenchymal stem cell conditioned medium had the ability to promote the proliferation,migration,invasion,and inhibit apoptosis of MHCC97-H cells,while human umbilical cord mesenchymal stem cell exosomes had the properties of promoting the migration,invasion and apoptosis of MHCC97-H cells,inhibiting the proliferation.
4.Mitral valve re-repair with leaflet augmentation for mitral regurgitation in children: A retrospective study in a single center
Fengqun MAO ; Kai MA ; Kunjing PANG ; Ye LIN ; Benqing ZHANG ; Lu RUI ; Guanxi WANG ; Yang YANG ; Jianhui YUAN ; Qiyu HE ; Zheng DOU ; Shoujun LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):958-962
Objective To investigate the efficacy of leaflet augmentation technique to repair the recurrent mitral valve (MV) regurgitation after mitral repair in children. Methods A retrospective analysis was conducted on the clinical data of children who underwent redo MV repair for recurrent regurgitation after initial MV repair, using a leaflet augmentation technique combined with a standardized repair strategy at Fuwai Hospital, Chinese Academy of Medical Sciences, from 2018 to 2022. The pathological features of the MV, key intraoperative procedures, and short- to mid-term follow-up outcomes were analyzed. Results A total of 24 patients (12 male, 12 female) were included, with a median age of 37.6 (range, 16.5–120.0) months. The mean interval from the initial surgery was (24.9±17.0) months. All children had severe mitral regurgitation preoperatively. The cardiopulmonary bypass time was (150.1±49.5) min, and the aortic cross-clamp time was (94.0±24.2) min. There were no early postoperative deaths. During a mean follow-up of (20.3±9.1) months, 3 (12.5%) patients developed moderate or severe mitral regurgitation (2 severe, 1 moderate). One (4.2%) patient died during follow-up, and one (4.2%) patient underwent a second MV reoperation. The left ventricular end-diastolic diameter was significantly reduced postoperatively compared to preoperatively [ (43.5±8.6) mm vs. (35.8±7.8)mm, P<0.001]. Conclusion The leaflet augmentation technique combined with a standardized repair strategy can achieve satisfactory short- to mid-term outcomes for the redo mitral repair after previous MV repair. It can be considered a safe and feasible technical option for cases with complex valvular lesions and severe pathological changes.
5.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
6.Novel antibacterial drug target against Gram-negative bacteria: lipopolysaccharide transport protein LptDE and its inhibitors
Yue LI ; Guo-qing LI ; Yuan-yuan TIAN ; Cong-ran LI ; Xin-yi YANG ; Kai-hu YAO ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(2):279-288
The outer membrane composed predominantly of lipopolysaccharide (LPS) is an essential biological barrier for most Gram-negative (G-) bacteria. Lipopolysaccharide transport protein (Lpt) complex LptDE is responsible for the critical final stage of LPS transport and outer membrane assembly. The structure and function of LptDE are highly conserved in most G- bacteria but absent in mammalian cells, and thus LptDE complex is regarded as an attractive antibacterial target. In recent 10 years, the deciphering of the three-dimensional structure of LptDE protein facilities the drug discovery based on such "non
7.Lanthanide Metal Organic Framework as A New Unlabeled Fluorescence Anisotropy Probe for Detection of Phosphate Ions
Kai MAO ; Xiao-Yan WANG ; Yu-Jie LUO ; Jia-Li XIE ; Tian-Jin XIE ; Yuan-Fang LI ; Cheng-Zhi HUANG ; Shu-Jun ZHEN
Chinese Journal of Analytical Chemistry 2024;52(1):35-44,中插1-中插4
Fluorescence anisotropy(FA)analysis has many advantages such as no requirement of separation,high throughput and real-time detection,and thus has been widely used in many fields,including biochemical analysis,food safety detection,environmental monitoring,etc.However,due to the small volume or mass of the target,its combination with the fluorescence probe cannot produce significant signal change.To solve this issue,researchers often use nanomaterials to enhance the mass or volume of fluorophore to improve the sensitivity.Nevertheless,this FA amplification strategy also has some disadvantages.Firstly,nanomaterials are easy to quench fluorescence.As a result,the FA value is easily influenced by light scattering,which reduces the detection accuracy.Secondly,fluorescent probes in most methods require complex modification steps.Therefore,it is necessary to develop new FA probes that do not require the amplification of volume and mass or modification.As a new kind of nanomaterials,luminescent metal-organic framework(MOF)has a large volume(or mass)and strong fluorescence emission.It does not require additional signal amplification materials.As a consequence,it can be used as a potential FA probe.This study successfully synthesized a lanthanide metal organic framework(Ce-TCPP MOF)using cerium ion(Ce3+)as the central ion and 5,10,15,20-tetra(4-carboxylphenyl)porphyrin(H2TCPP)as the ligand through microwave assisted method,and used it as a novel unmodified FA probe to detect phosphate ions(Pi).In the absence of Pi,Ce-TCPP MOF had a significant FA value(r).After addition of Pi,Pi reacted with Ce3+in MOF and destroyed the structure of MOF into the small pieces,resulting in a decrease in r.The experimental results indicated that with the increase of Pi concentration,the change of the r of Ce-TCPP MOF(Δr)gradually increased.The Δr and Pi concentration showed a good linear relationship within the range of 0.5-3.5 μmol/L(0.016-0.108 mg/L).The limit of detection(LOD,3σ/k)was 0.41 μmol/L.The concentration of Pi in the Jialing River water detected by this method was about 0.078 mg/L,and the Pi value detected by ammonium molybdate spectrophotometry was about 0.080 mg/L.The two detection results were consistent with each other,and the detection results also meet the ClassⅡwater quality standard,proving that this method could be used for the detection of Pi in complex water bodies.
8.Visualization analysis of vascular stimulating scaffolds in bone tissue engineering
Yuan FANG ; Zhijie KANG ; Haiyan WANG ; Xiaohe LI ; Kai ZHANG
Chinese Journal of Tissue Engineering Research 2024;28(17):2708-2715
BACKGROUND:The study of the physical properties of scaffolds has always been a hot topic in the field of tissue engineering research.However,for vascular stimulating scaffolds,in addition to meeting the basic performance of the scaffold,other methods are also needed to promote the regeneration of blood vessels within the scaffold,in order to achieve the ultimate goal of repairing bone tissue. OBJECTIVE:A visualization analysis was carried out on the literature published in and outside China on scaffold stimulation for bone tissue engineering,to explore the research hotspots and research status in this field,and to provide a reference for subsequent studies. METHODS:Using the CNKI database and Web of Science core database as retrieval databases,the relevant literature on vascular scaffolds for bone tissue engineering was retrieved.The literature that did not conform to the research object was removed.The obtained data were imported into CiteSpace 6.1.R2 software.Visualization analysis was performed on authors,national institutions,and keywords in the research field. RESULTS AND CONCLUSION:(1)China,the United States,and Germany were the top three countries with the most articles on scaffold stimulation for bone tissue engineering.(2)The top 3 institutions in the CNKI database were Southern Medical University,Huazhong University of Science and Technology,and Donghua University.In the core database of Web of Science,Shanghai Jiao Tong University,Sichuan University and Chinese Academy of Sciences ranked the top 3 in terms of the number of institutional publications.(3)The top 3 keywords in the CNKI database were"tissue engineering,vascularization,angiogenesis".The top 3 keywords in the Web of Science core database were"mesenchymal stem cell,scaffold,vascularization".(4)Through the analysis of co-citation and highly cited references,the main concerns were as follows:vascularization strategies:scaffold design,angiogenic factor delivery,in vitro co-culture,and in vivo pre-vascularization.Technology:3D printing,electrospinning,vascular transplantation,vascular fusion.Mechanisms:immune regulation and macrophages,drug/growth factor delivery,the relationship between endothelial cells and osteoblasts,the paracrine relationship between bone cells and endothelial cells,signaling molecular pathways,angiogenesis,and anti-angiogenesis molecules.(5)The researches concerning vascular stimulating scaffolds in bone tissue engineering in and outside China attach great importance to the application of stem cells and 3D printing technology.Current research focuses on biological 3D printing technology,scaffold modification methods,and the development and application of intelligent biomaterials based on bone repair mechanisms.
9.Mid-and long-term state after total hip arthroplasty versus hemiarthroplasty for femoral neck fractures in the elderly:evaluation using propensity score matching method
Zhipeng LI ; Dawei HUAN ; Zhaofeng YUAN ; Kai DING ; Yue QIU ; Tianwei XIA ; Jirong SHEN
Chinese Journal of Tissue Engineering Research 2024;28(24):3839-3844
BACKGROUND:Arthroplasty is the primary treatment for displaced femoral neck fractures in the elderly,and the choice of total hip arthroplasty versus hemiarthroplasty is currently the subject of considerable debate. OBJECTIVE:To compare the mid-and long-term survival status of total hip arthroplasty versus hemiarthroplasty under a direct anterior approach for displaced femoral neck fractures in the elderly based on the propensity score matching method. METHODS:One hundred and forty-seven elderly patients(≥65 years of age)with displaced femoral neck fractures were admitted from January 2016 to January 2021,of whom 88 had total hip arthroplasty(total hip arthroplasty group)and 59 had artificial femoral head replacement(hemiarthroplasty group).For the patients'preoperative comorbidities,the age-corrected Charlson Comorbidity Scale was used to quantify the scores and calculate patient frailty.The propensity score matching method was used to match the two groups 1:1 and to compare the operation time,bleeding,postoperative hospitalization time,hospitalization cost,nutritional index,postoperative complications,and mortality between the two groups after matching.Postoperative survival time was determined by Kaplan-Meier Survival analysis. RESULTS AND CONCLUSION:(1)After propensity score matching,a total of 42 matched pairs were successful in both groups,and the preoperative data of patients in both groups were balanced and comparable after matching(P>0.05).(2)Compared with the hemiarthroplasty group,operation time(79.71 minutes vs.59.07 minutes,P<0.001),bleeding volume(839.64 mL vs.597.83 mL,P=0.001),and hospitalization cost(56 508.15 yuan vs.41 702.85 yuan,P<0.001)were significantly higher in the total hip arthroplasty group.However,the mortality rate was lower in the total hip arthroplasty group than in the hemiarthroplasty group(36%vs.57%,HR=0.44,95%CI:0.23-0.87,P=0.018),and the mean survival time was longer in the total hip arthroplasty group than in the hemiarthroplasty group(59.4 months vs.43.7 months,P=0.024).(3)There were no statistically significant differences in postoperative hospitalization time,preoperative and postoperative nutritional indicators,and overall postoperative complication rate between the two groups(P>0.05).However,in terms of postoperative pain,the incidence of pain was significantly higher in the hemiarthroplasty group than that in the total hip arthroplasty group(24%vs.7%,P=0.035).(4)Overall,total hip arthroplasty has a better prognosis for survival,while hemiarthroplasty is more appropriate for patients with poor physical fitness.At the same time,postoperative pain may largely affect the quality and survival time of patients after hip arthroplasty.
10.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.

Result Analysis
Print
Save
E-mail