1.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
2.Comparison of treatment regimens for unresectable stage III epidermal growth factor receptor ( EGFR ) mutant non-small cell lung cancer.
Xin DAI ; Qian XU ; Lei SHENG ; Xue ZHANG ; Miao HUANG ; Song LI ; Kai HUANG ; Jiahui CHU ; Jian WANG ; Jisheng LI ; Yanguo LIU ; Jianyuan ZHOU ; Shulun NIE ; Lian LIU
Chinese Medical Journal 2025;138(14):1687-1695
BACKGROUND:
Durvalumab after chemoradiotherapy (CRT) failed to bring survival benefits to patients with epidermal growth factor receptor ( EGFR ) mutations in PACIFIC study (evaluating durvalumab in patients with stage III, unresectable NSCLC who did not have disease progression after concurrent chemoradiotherapy). We aimed to explore whether locally advanced inoperable patients with EGFR mutations benefit from tyrosine kinase inhibitors (TKIs) and the optimal treatment regimen.
METHODS:
We searched the PubMed, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases from inception to December 31, 2022 and performed a meta-analysis based on a Bayesian framework, with progression-free survival (PFS) and overall survival (OS) as the primary endpoints.
RESULTS:
A total of 1156 patients were identified in 16 studies that included 6 treatment measures, including CRT, CRT followed by durvalumab (CRT-Durva), TKI monotherapy, radiotherapy combined with TKI (RT-TKI), CRT combined with TKI (CRT-TKI), and TKI combined with durvalumab (TKI-Durva). The PFS of patients treated with TKI-containing regimens was significantly longer than that of patients treated with TKI-free regimens (hazard ratio [HR] = 0.37, 95% confidence interval [CI], 0.20-0.66). The PFS of TKI monotherapy was significantly longer than that of CRT (HR = 0.66, 95% CI, 0.50-0.87) but shorter than RT-TKI (HR = 1.78, 95% CI, 1.17-2.67). Furthermore, the PFS of RT-TKI or CRT-TKI were both significantly longer than that of CRT or CRT-Durva. RT-TKI ranked first in the Bayesian ranking, with the longest OS (60.8 months, 95% CI = 37.2-84.3 months) and the longest PFS (21.5 months, 95% CI, 15.4-27.5 months) in integrated analysis.
CONCLUSIONS:
For unresectable stage III EGFR mutant NSCLC, RT and TKI are both essential. Based on the current evidence, RT-TKI brings a superior survival advantage, while CRT-TKI needs further estimation. Large randomized clinical trials are urgently needed to explore the appropriate application sequences of TKI, radiotherapy, and chemotherapy.
REGISTRATION
PROSPERO; https://www.crd.york.ac.uk/PROSPERO/ ; No. CRD42022298490.
Humans
;
Carcinoma, Non-Small-Cell Lung/therapy*
;
ErbB Receptors/genetics*
;
Lung Neoplasms/drug therapy*
;
Mutation/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Chemoradiotherapy
;
Antibodies, Monoclonal/therapeutic use*
3.Coronary artery stenosis associated with right ventricular dysfunction in acute pulmonary embolism: A case-control study.
Yuejiao MA ; Jieling MA ; Dan LU ; Yinjian YANG ; Chao LIU ; Liting WANG ; Xijie ZHU ; Xianmei LI ; Chunyan CHENG ; Sijin ZHANG ; Jiayong QIU ; Jinghui LI ; Mengyi LIU ; Kai SUN ; Xin JIANG ; Xiqi XU ; Zhi-Cheng JING
Chinese Medical Journal 2025;138(16):2028-2036
BACKGROUND:
The potential impact of pre-existing coronary artery stenosis (CAS) on right ventricular (RV) function during acute pulmonary embolism (PE) episodes remains underexplored. This study aimed to investigate the association between pre-existing CAS and RV dysfunction in patients with acute PE.
METHODS:
In this multicenter, case-control study, 89 cases and 176 controls matched for age were enrolled at three study centers (Peking Union Medical College Hospital, Fuwai Hospital, and the Second Affiliated Hospital of Harbin Medical University) from January 2016 to December 2020. The cases were patients with acute PE with CAS, and the controls were patients with acute PE without CAS. Coronary artery assessment was performed using coronary computed tomographic angiography. CAS was defined as ≥50% stenosis of the lumen diameter in any coronary vessel >2.0 mm in diameter. Conditional logistic regression analysis was used to evaluate the association between CAS and RV dysfunction.
RESULTS:
The percentages of RV dysfunction (19.1% [17/89] vs. 44.6% [78/176], P <0.001) and elevated systolic pulmonary artery pressure (sPAP) (19.3% [17/89] vs. 39.5% [68/176], P = 0.001) were significantly lower in the case group than those in the control group. In the multivariable logistic regression model, CAS was independently and negatively associated with RV dysfunction (adjusted odds ratio [OR]: 0.367; 95% confidence interval [CI]: 0.185-0.728; P = 0.004), and elevated sPAP (OR: 0.490; 95% CI: 0.252-0.980; P = 0.035), respectively.
CONCLUSIONS
Pre-existing CAS was significantly and negatively associated with RV dysfunction and elevated sPAP in patients with acute PE. This finding provides new insights into RV dysfunction in patients with acute PE with pre-existing CAS.
Humans
;
Pulmonary Embolism/complications*
;
Case-Control Studies
;
Male
;
Ventricular Dysfunction, Right/physiopathology*
;
Female
;
Middle Aged
;
Aged
;
Coronary Stenosis/complications*
;
Logistic Models
;
Adult
4.Network pharmacology and animal experiments reveal molecular mechanisms of Cordyceps sinensis in ameliorating heart aging and injury in mice by regulating Nrf2/HO-1/NF-κB pathway.
Si-Yi LIU ; Yue TU ; Wei-Ming HE ; Wen-Jie LIU ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN ; Xin-Yu LIANG
China Journal of Chinese Materia Medica 2025;50(4):1063-1074
This study aims to explore the effects and mechanisms of the traditional Chinese medicine Cordyceps sinensis(CS) in ameliorating heart aging and injury in mice based on animal experiments and network pharmacology. A mouse model of heart aging was established by continuously subcutaneous injection of D-galactose(D-gal). Thirty mice were randomly assigned into a normal group, a model group, a low-dose CS(CS-L) group, a high-dose CS(CS-H) group, and a vitamin E(VE) group. Mice in these groups were administrated with normal saline, different doses of CS suspension, or VE suspension via gavage daily. After 60 days of treatment with D-gal and various drugs, all mice were euthanized, and blood and heart tissue samples were collected for determination of the indicators related to heart aging and injury in mice. Experimental results showed that both high and low doses of CS and VE ameliorated the aging phenotype, improved the heart index and myocardial enzyme spectrum, restored the expression levels of proteins associated with cell cycle arrest and senescence-associated secretory phenotypes(SASP), and alleviated the fibrosis and histopathological changes of the heart tissue in model mice. From the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),259 active ingredients of CS were retrieved. From Gene Cards and OMIM, 2 568 targets related to heart aging were identified, and 133common targets shared by CS and heart aging were obtained. The Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes( KEGG) pathway enrichment revealed that the pathways related to heart aging involved oxidative stress,apoptosis, inflammation-related signaling pathways, etc. The animal experiment results showed that both high and low doses of CS and VE ameliorated oxidative stress and apoptosis in the heart tissue to varying degrees in model mice. Additionally, CS-H and VE activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway and inhibited the expression of key proteins in the nuclear factor-κB(NF-κB) pathway in the heart tissue of model mice. In conclusion, this study demonstrated based on network pharmacology and animal experiments that CS may alleviate heart aging and injury in aging mice by reducing oxidative stress,apoptosis, and inflammation in the heart via the Nrf2/HO-1/NF-κB pathway.
Animals
;
Cordyceps/chemistry*
;
Mice
;
NF-E2-Related Factor 2/genetics*
;
NF-kappa B/genetics*
;
Aging/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Network Pharmacology
;
Drugs, Chinese Herbal/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Heart/drug effects*
;
Humans
;
Myocardium/metabolism*
;
Membrane Proteins/genetics*
5.Saltwater stir-fried Plantaginis Semen alleviates renal fibrosis by regulating epithelial-mesenchymal transition in renal tubular cells.
Xin-Lei SHEN ; Qing-Ru ZHU ; Wen-Kai YU ; Li ZHOU ; Qi-Yuan SHAN ; Yi-Hang ZHANG ; Yi-Ni BAO ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(5):1195-1208
This study aimed to investigate the effect of saltwater stir-fried Plantaginis Semen(SPS) on renal fibrosis in rats and decipher the underlying mechanism. Thirty-six Sprague-Dawley rats were randomly assigned into control, model, losartan potassium, and low-, medium-, and high-dose(15, 30, and 60 g·kg~(-1), respectively) SPS groups. Rats in other groups except the control group were subjected to unilateral ureteral obstruction(UUO) to induce renal fibrosis, and the modeling and gavage lasted for 14 days. After 14 consecutive days of treatment, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in rats of each group were determined by an automatic biochemical analyzer. Hematoxylin-eosin(HE) and Masson staining were used to evaluate pathological changes in the renal tissue. Western blot and immunofluorescence assay were conducted to determine the protein levels of fibronectin(FN), collagen Ⅰ, vimentin, and α-smooth muscle actin(α-SMA) in the renal tissue. The mRNA levels of epithelial-mesenchymal transition(EMT)-associated transcription factors including twist family bHLH transcription factor 1(TWIST1), snail family transcriptional repressor 1(SNAI1), and zinc finger E-box binding homeobox 1(ZEB1), as well as inflammatory cytokines such as interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α), were determined by RT-qPCR. Human renal proximal tubular epithelial(HK2) cells exposed to transforming growth factor-β(TGF-β) for the modeling of renal fibrosis were used to investigate the inhibitory effect of SPS on EMT. Network pharmacology and Western blot were employed to explore the molecular mechanism of SPS in alleviating renal fibrosis. The results showed that SPS significantly reduced Scr and BUN levels and alleviated renal injury and collagen deposition in UUO rats. Moreover, SPS notably down-regulated the protein levels of FN, collagen Ⅰ, vimentin, and α-SMA as well as the mRNA levels of SNAI1, ZEB1, TWIST1, IL-1β, IL-6, and TNF-α in the kidneys of UUO rats and TGF-β-treated HK-2 cells. In addition, compared with Plantaginis Semen without stir-frying with saltwater, SPS showed increased content of specific compounds, which were mainly enriched in the mitogen-activated protein kinase(MAPK) signaling pathway. SPS significantly inhibited the phosphorylation of extracellular signal-regulated kinase(ERK) and p38 MAPK in the kidneys of UUO rats and TGF-β-treated HK2 cells. In conclusion, SPS can alleviate renal fibrosis by attenuating EMT through inhibition of the MAPK signaling pathway.
Animals
;
Epithelial-Mesenchymal Transition/drug effects*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Fibrosis/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Kidney Diseases/pathology*
;
Kidney Tubules/pathology*
;
Humans
6.Dahuang Zhechong Pills delay heart aging by reducing cardiomyocyte apoptosis via PI3K/AKT/HIF-1α signaling pathway.
Wen-Jie LIU ; Yue TU ; Wei-Ming HE ; Si-Yi LIU ; Liu-Yun-Xin PAN ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN
China Journal of Chinese Materia Medica 2025;50(5):1276-1285
This study aimed to investigate the effect of Dahuang Zhechong Pills(DHZCP) in delaying heart aging(HA) and explore the potential mechanism. Network pharmacology and molecular docking were employed to explore the targets and potential mechanisms of DHZCP in delaying HA. Furthermore, in vitro experiments were conducted with the DHZCP-containing serum to verify key targets and pathways in D-galactose(D-gal)-induced aging of cardiomyocytes. Active components of DHZCP were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCSMP), and relevant targets were predicted. HA-related targets were screened from the GeneCards, Online Mendelian Inheritance in Man(OMIM), and DisGeNET. The common targets shared by the active components of DHZCP and HA were used to construct a protein-protein interaction network in STRING 12.0, and core targets were screened based on degree in Cytoscape 3.9.1. Metaspace was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of the core targets to predict the mechanisms. Molecular docking was performed in AutoDock Vina. The results indicated that a total of 774 targets of the active components of DHZCP and 4 520 targets related to HA were screened out, including 510 common targets. Core targets included B-cell lymphoma 2(BCL-2), serine/threonine kinase 1(AKT1), and hypoxia-inducible factor 1 subunit A(HIF1A). The GO and KEGG enrichment analyses suggested that DHZCP mainly exerted its effects via the phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway, HIF-1α signaling pathway, longevity signaling pathway, and apoptosis signaling pathway. Among the pathways predicted by GO and KEGG enrichment analyses, the PI3K/AKT/HIF-1α signaling pathway was selected for verification. The cell-counting kit 8(CCK-8) assay showed that D-gal significantly inhibited the proliferation of H9c2 cells, while DHZCP-containing serum increased the viability of H9c2 cells. SA-β-gal staining revealed a significant increase in the number of blue-green positive cells in the D-gal group, which was reduced by DHZCP-containing serum. TUNEL staining showed that DHZCP-containing serum decreased the number of apoptotic cells. After treatment with DHZCP-containing serum, the protein levels of Klotho, BCL-2, p-PI3K/PI3K, p-AKT1/AKT1, and HIF-1α were up-regulated, while those of P21, P16, BCL-2 associated X protein(Bax), and cleaved caspase-3 were down-regulated. The results indicated that DHZCP delayed HA via multiple components, targets, and pathways. Specifically, DHZCP may delay HA by reducing apoptosis via activating the PI3K/AKT/HIF-1α signaling pathway.
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Apoptosis/drug effects*
;
Myocytes, Cardiac/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Animals
;
Rats
;
Humans
;
Molecular Docking Simulation
;
Aging/metabolism*
;
Protein Interaction Maps/drug effects*
;
Heart/drug effects*
;
Network Pharmacology
7.Evidence mapping of clinical research on traditional Chinese medicine in treatment of renal anemia.
Ke-Xin ZHANG ; Xin LI ; Kai-Li CHEN ; Peng-Tao DONG ; Lu-Yao SHI ; Lin-Qi ZHANG
China Journal of Chinese Materia Medica 2025;50(12):3413-3422
Through evidence mapping, this paper systematically summarized the research evidence on the use of traditional Chinese medicine(TCM) in treating renal anemia, displaying the distribution of evidence in this field. A systematic search was conducted across databases, including CNKI, Wanfang, VIP, SinoMed, Springner, PubMed, Engineering Village, and Web of Science, targeting studies published up to June 30, 2024. The research evidence was summarized and displayed through a combination of graphs, tables, and text. A total of 264 interventional studies, 37 observational studies, and 7 systematic reviews were included. The annual publication volumes related to TCM treatment in renal anemia showed an overall upward trend, with most studies involving sample sizes between 60 and 120 participants(224 articles, 74.42%). Intervention measures were categorized into 21 types, with oral TCM decoctions being the most common medicine(171 times, 56.81%). The use of self-made prescriptions was the most common TCM intervention method. The intervention duration was mainly between 8 weeks and 3 months(239 articles, 79.40%). The most frequently reported TCM syndrome was spleen and kidney Qi deficiency. The top 2 outcome indicators were the anemia indicators and renal injury/renal function markers. However, several issues were identified in these studies, such as insufficient attention to the sources, social/geographical information, and temporal continuity of research subjects in observational research. Randomized controlled trials mostly had a high risk of bias, mainly due to issues such as randomization bias, blinding bias, and failure to register research protocols. The methodology quality of systematic reviews was generally low, mainly due to inadequate inclusion of literature, failure to specify funding sources, and lack of pre-registrations. While the report quality of systematic review was acceptable, there were significant gaps in the reporting of protocols, registration, and funds. The results show that these issues affect the quality of research and the reliability of findings on TCM in treating renal anemia, underscoring the need to address them to conduct higher-quality research and provide more reliable medical evidence for TCM in treating renal anemia.
Humans
;
Anemia/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Kidney Diseases/drug therapy*
8.Effect of Wenpi Pills on lipid metabolism in mice with non-alcoholic fatty liver disease induced by various diets.
Chen-Fang ZHANG ; Kai LIU ; Chao-Wen FAN ; Mei-Ting TAI ; Xin ZHANG ; Rong ZHANG ; Qin-Wen CHEN ; Zun-Li KE
China Journal of Chinese Materia Medica 2025;50(10):2730-2739
The aim of this study was to investigate the improvement effect of Wenpi Pills(WPP) on non-alcoholic fatty liver disease(NAFLD). The experiment was divided into two parts, using C57BL/6 mouse models induced by a high-fat diet(HFD) and a methionine and choline deficiency diet(MCD). The HFD-induced experiment lasted for 16 weeks, while the MCD-induced experiment lasted for 6 weeks. Mice in both parts were divided into four groups: control group, model group, low-dose WPP group(3.875 g·kg~(-1), WPP_L), and high-dose WPP group(15.5 g·kg~(-1), WPP_H). After sample collection from the HFD-induced mice, lipid content in the serum and liver, liver function indexes in the serum, and hepatic pathology were examined. Real-time fluorescent quantitative reverse transcription PCR(qRT-PCR) was used to detect the expression of lipid-related genes. After sample collection from the MCD-induced mice, serum liver function indexes and inflammatory factors were measured, and hepatic pathology and lipid changes were analyzed by hematoxylin-eosin(HE) staining and widely targeted lipidomic profiling, respectively. The results from the HFD-induced experiment showed that, compared with the HFD group, WPP administration significantly reduced the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), triglyceride(TG), and total cholesterol(TC) in the serum, with the WPP_H group showing the most significant improvement. HE staining results indicated that, compared with the HFD group, WPP treatment improved the morphology of white adipocytes, reducing their size, and alleviated hepatic steatosis and lipid droplet accumulation. The qRT-PCR results suggested that WPP might increase the mRNA expression of liver cholesterol-converting genes, such as liver X receptor α(LXRα) and cytochrome P450 family 27 subfamily A member 1(CYP27A1), as well as lipid consumption genes like peroxisome proliferator-activated receptor α(PPARα) and adenosine mono-phosphate-activated protein kinase(AMPK). Meanwhile, WPP decreased the mRNA expression of lipid synthesis genes, including fatty acid synthetase(FAS), stearoyl-CoA desaturase 1(SCD1), and sterol regulatory element-binding protein 1c(SREBP-1c), thereby reducing liver lipid accumulation. The results from the MCD-induced experiment showed that, compared with the MCD group, WPP administration reduced the levels of ALT, AST, and inflammatory factors in the serum, thereby alleviating liver injury and the inflammatory response. HE staining of liver tissue indicated that WPP effectively improved hepatic steatosis. Non-targeted lipidomics analysis showed that WPP improved lipid metabolism disorders in the liver, mainly by affecting the metabolism of TG and cholesterol esters. In conclusion, WPP can improve hepatic lipid accumulation in NAFLD mice induced by both HFD and MCD. This beneficial effect is primarily achieved by alleviating liver injury and inflammation, as well as regulating lipid metabolism.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Lipid Metabolism/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Diet, High-Fat/adverse effects*
;
Liver/drug effects*
;
Humans
;
Disease Models, Animal
;
Methionine
9.Study on strategies and methods for discovering risk of traditional Chinese medicine-related liver injury based on real-world data: an example of Corydalis Rhizoma.
Long-Xin GUO ; Li LIN ; Yun-Juan GAO ; Min-Juan LONG ; Sheng-Kai ZHU ; Ying-Jie XU ; Xu ZHAO ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2025;50(13):3784-3795
In recent years, there have been frequent adverse reactions/events associated with traditional Chinese medicine(TCM), especially liver injury related to traditional non-toxic TCM, which requires adequate attention. Liver injury related to traditional non-toxic TCM is characterized by its sporadic and insidious nature and is influenced by various factors, making its detection and identification challenging. There is an urgent need to develop a strategy and method for early detection and recognition of traditional non-toxic TCM-related liver injury. This study was based on national adverse drug reaction monitoring center big data, integrating methodologies such as reporting odds ratio(ROR), network toxicology, and computational chemistry, so as to systematically research the risk signal identification and evaluation methods for TCM-related liver injury. The optimized ROR method was used to discover potential TCM with a risk of liver injury, and network toxicology and computational chemistry were used to identify potentially high-risk TCM. Additionally, typical clinical cases were analyzed for confirmation. An integrated strategy of "discovery via big data, identification via dry/wet method, confirmation via typical cases, and precise risk prevention and control" was developed to identify the risk of TCM-related liver injury. Corydalis Rhizoma was identified as a TCM with high risk, and its toxicity-related substances and potential toxicity mechanisms were analyzed. The results revealed that liver injury is associated with components such as tetrahydropalmatine and tetrahydroberberine, with potential mechanisms related to immune-inflammatory pathways such as the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and Th17 cell differentiation. This paper innovatively integrated real-world evidence and computational toxicology methods, offering insights and technical support for establishing a risk discovery and identification strategy for TCM-related liver injury based on real-world big data, providing innovative ideas and strategies for guiding the safe and rational use of medication in clinical practices.
Corydalis/adverse effects*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Chemical and Drug Induced Liver Injury/etiology*
;
Medicine, Chinese Traditional/adverse effects*
;
Rhizome/adverse effects*
;
Male
;
Female
10.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*

Result Analysis
Print
Save
E-mail