1.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
2. The regulatory mechanism of physiological sleep-wake
Wei-Jie LU ; Kai LIU ; Xin-Ke ZHAO ; Qian-Rong LI ; Ying-Dong LI ; Guo-Tai WU
Chinese Pharmacological Bulletin 2024;40(3):421-426
This paper explains the mechanism of the mutual switching between physiological sleep and wakefulness from the aspects of the sleep circadian system and the sleep homeostasis system. In the circadian rhythm system, with the suprachiasmatic nucleus as the core, the anatomical connections between the suprachiasmatic nucleusand various systems that affect sleep are summarized, starting from the suprachiasmatic nucleus, passing through the four pathways of the melatonin system, namely, subventricular area of the hypothalamus, the ventrolateral nucleus of the preoptic area, orexin neurons, and melatonin, then the related mechanisms of their regulation of sleep and wakefulness are expounded. In the sleep homeostasis system, with adenosine and prostaglandin D2 as targets, the role of hypnogen in sleep arousal mechanisms in regulation is also expounded.
3.Novel antibacterial drug target against Gram-negative bacteria: lipopolysaccharide transport protein LptDE and its inhibitors
Yue LI ; Guo-qing LI ; Yuan-yuan TIAN ; Cong-ran LI ; Xin-yi YANG ; Kai-hu YAO ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(2):279-288
The outer membrane composed predominantly of lipopolysaccharide (LPS) is an essential biological barrier for most Gram-negative (G-) bacteria. Lipopolysaccharide transport protein (Lpt) complex LptDE is responsible for the critical final stage of LPS transport and outer membrane assembly. The structure and function of LptDE are highly conserved in most G- bacteria but absent in mammalian cells, and thus LptDE complex is regarded as an attractive antibacterial target. In recent 10 years, the deciphering of the three-dimensional structure of LptDE protein facilities the drug discovery based on such "non
4.Determination of Isobutyl Chloroformate Residue in Agatroban by Derivatization-Gas Chromatography-Mass Spectrometry
Chong QIAN ; Bo-Kai MA ; Chuang NIU ; Shan-Shan LIU ; Wen-Wen HUANG ; Xin-Lei GOU ; Wei WANG ; Mei ZHANG ; Xue-Li CAO
Chinese Journal of Analytical Chemistry 2024;52(1):113-120
A derivatizaton method combined with gas chromatography-mass spectrometry(GC-MS)was established for detection of isobutyl chloroformate(IBCF)residue in active pharmaceutical ingredient of agatroban.The extraction and derivatization reagents,derivatization time,qualitative and quantitative ions were selected and optimized,respectively.The possible mechanism of derivatization and characteristic fragment ions fragmentation were speculated.The agatroban samples were dissolved and extracted by methanol,and the residual IBCF was derived with methanol to generate methyl isobutyl carbonate(MIBCB).After 24 h static derivatization at room temperature,IBCF was completely transformed into MIBCB,which could be used to indirectly detect IBCF accurately.The results showed that the linearity of this method was good in the range of 25-500 ng/mL(R2=0.9999).The limit of detection(LOD,S/N=3)was 0.75 μg/g,and the limit of quantification(LOQ,S/N=10)was 2.50 μg/g.Good recoveries(95.2%-97.8%)and relative standard deviations(RSDs)less than 3.1%(n=6)were obtained from agatroban samples at three spiked levels of IBCF(2.50,25.00,50.00 μg/g),which showed good accuracy of this method.Good precision of detection results was obtained by different laboratory technicians at different times,the mean value of spiked sample solution(25.00 μg/g)was 24.28 μg/g,and the RSD was 2.1%(n=12).The durability was good,minor changes of detection conditions had little effect on the results.Under the original condition and conditions with initial column temperature±5℃,heating rate±2℃/min,column flow rate±0.1 mL/min,the IBCF content of spiked sample solution(25.00 μg/g)was detected,the mean value of detection results was 24.16 μg/g,and the RSD was 2.2%(n=7).Eight batches of agatroban samples from two manufacturers were detected using the established method,and the results showed that no IBCF residue was detected in any of these samples.The agatroban samples could be dissolved by methanol,and then the IBCF residue could be simultaneously extracted and derived with methanol as well.This detection method had the advantages of simple operation,high sensitivity,low matrix effect and accurate quantification,which provided a new effective method for detection of IBCF residue in agatroban.
5.Expression and prognostic value of serum RAGE and CXCL16 in patients with sepsis complicated with acute respiratory distress syndrome
Xin ZHANG ; Zhong LI ; Haiyan HAN ; Zengxiu WU ; Kai WANG ; Jianfeng YAN ; Weiqin DU
International Journal of Laboratory Medicine 2024;45(4):420-425
Objective To investigate the expression and prognostic value of serum receptor for advanced glycation end products(RAGE)and CXC-chemokine ligand 16(CXCL16)in patients with sepsis complicated with acute respiratory distress syndrome(ARDS).Methods A total of 234 patients with sepsis diagnosed and treated in a hospital from January 2019 to January 2022 were selected as the study subjects,and were divided into 82 patients with sepsis complicated with ARDS(ARDS group)and 152 patients with sepsis without ARDS(non-ARDS group)according to whether the subjects were complicated with ARDS.ARDS group was divided into survival group(n=50)and death group(n=32)according to the survival status within 28 days of admission.Another 60 healthy subjects who underwent physical examination in the same period were se-lected as the control group.Serum RAGE and CXCL16 levels were detected by enzyme-linked immunosorbent assay.Pearson correlation analysis of serum RAGE and CXCL16 levels with sequential organ failure assess-ment(SOFA)score,acute physiology and chronic health evaluation Ⅱ(APACHE Ⅱ)score and oxygenation index in patients with sepsis and ARDS.Multivariate Logistic regression analysis of prognostic factors of sep-sis complicated with ARDS.The predictive value of serum RAGE and CXCL16 on the prognosis of sepsis complicated with ARDS patients was analyzed by receiver operating characteristic curve.Results The serum RAGE and CXCL16 levels in ARDS group were higher than those in non-ARDS group and control group,and the serum RAGE and CXCL16 levels in non-ARDS group were higher than those in control group,the differ-ence was statistically significant(P<0.05).Compared with the survival group,the mechanical ventilation time,intensive care unit stay time,procalcitonin,SOFA score,APACHE Ⅱ score,serum RAGE,CXCL16 lev-els were higher in the death group,and the oxygenation index was lower,with statistical significance(all P<0.05).The serum RAGE level in patients with sepsis complicated with ARDS was positively correlated with SOFA score and APACHE Ⅱ score(r=0.603,0.671,P<0.05).Serum CXCL16 levels were positively corre-lated with SOFA score and APACHE Ⅱ score(r=0.655,0.707,P<0.05).Serum RAGE and CXCL16 were negatively correlated with oxygenation index(r=-0.712,-0.683,P<0.05).Multi-factor Logistics regres-sion analysis showed that serum RAGE and CXCL16 were independent risk factors for death within 28 days of admission in patients with sepsis complicated with ARDS.The area under the curve(AUC)of combined de-tection of serum RAGE and CXCL16 for predicting death within 28 days of admission in patients with sepsis complicated with ARDS was 0.882,which was higher than that of single index detection of serum RAGE and CXCL16,and the difference was statistically significant(Z=4.450,4.906,P<0.05).Conclusion The com-bined detection of serum RAGE and CXCL16 is helpful to evaluate the clinical prognosis of sepsis complicated with ARDS patients.
6.Epidemiological Investigation of Dampness Syndrome Manifestations in the Population at Risk of Cerebrovascular Disease
Xiao-Jia NI ; Hai-Yan HUANG ; Qing SU ; Yao XU ; Ling-Ling LIU ; Zhuo-Ran KUANG ; Yi-Hang LI ; Yi-Kai ZHANG ; Miao-Miao MENG ; Yi-Xin GUO ; Xiao-Bo YANG ; Ye-Feng CAI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):531-539
Objective To make an epidemiological investigation on traditional Chinese medicine(TCM)dampness syndrome manifestations in the population at risk of cerebrovascular diseases in Guangdong area.Methods A cross-sectional study was conducted to analyze the clinical data related to the risk of cerebrovascular diseases in 330 Guangdong permanent residents.The diagnosis of dampness syndrome,quantitative scoring of dampness syndrome and rating of the risk of stroke were performed for the investigation of the distribution pattern of dampness syndrome and its influencing factors.Results(1)A total of 306(92.73%)study subjects were diagnosed as dampness syndrome.The percentage of dampness syndrome in the risk group was 93.82%(258/275),which was slightly higher than that of the healthy group(48/55,87.27%),but the difference was not statistically significant(χ2 = 2.91,P = 0.112).The quantitative score of dampness syndrome in the risk group was higher than that of the healthy group,and the difference was statistically significance(Z =-2.24,P = 0.025).(2)Among the study subjects at risk of cerebrovascular disease,evaluation time(χ2 = 26.11,P = 0.001),stroke risk grading(χ2= 8.85,P = 0.031),and history of stroke or transient ischemic attack(TIA)(χ2 = 9.28,P = 0.015)were the factors influencing the grading of dampness syndrome in the population at risk of cerebrovascular disease.Conclusion Dampness syndrome is the common TCM syndrome in the population of Guangdong area.The manifestations of dampness syndrome are more obvious in the population with risk factors of cerebrovascular disease,especially in the population at high risk of stroke,and in the population with a history of stroke or TIA.The assessment and intervention of dampness syndrome should be taken into account for future project of stroke prevention in Guangdong.
7.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
8.Research Status of Irisin in Improving Hepatic Lipid Metabolism Disorder and Reducing NAFLD
Kai-Ling HUANG ; Xin-Cheng YANG ; Liang-Ming LI ; Wen-Qi YANG
Progress in Biochemistry and Biophysics 2024;51(8):1873-1882
Nonalcoholic fatty liver disease (NAFLD) does great harm to human health, and the incidence is increasing year by year. The liver serves an important role in lipid metabolism. Hepatic steatosis develops as a consequence of lipid metabolic dysregulation, namely the imbalance among fatty acid uptake, de novo lipogenesis (DNL), fatty acid oxidation (FAO) and very low density lipoprotein-mediated lipid export. With diverse health-promoting effects, exercise is a cheap and effective intervention for the prevention and treatment of NAFLD. Amelioration of impaired lipid metabolism acts as an important mechanism by which exercise protects against NAFLD. However, how exercise ameliorates lipid metabolic dysregulation is still unclear. Skeletal muscle is not only a vital organ of motion, but also has an endocrine function, it secretes numerous myokines which mediates exercise-induced benefits on our body. Irisin is a small peptide derived from proteolytic cleavage of fibronectin type III domain containing protein 5 (FNDC5). As a myokine, its production is regulated by exercise and it play an important role in exercise-induced protection against obesity-related chronic diseases, such as NAFLD. A growing body of research has demonstrated that Irisin ameliorates lipid metabolic dysregulation in NAFLD. Irisin mediated inhibition of hepatic DNL and FAO has been reported. However, the effect of Irisin on fatty acid uptake and lipid export is still unknown. In the present review, we summarized the researches focusing on how exercise regulated Irisin production and the effect of Irisin on lipid metabolism on NAFLD. To clarify the above problems will help us to better understand the role of Irisin on exercise-mediated protection against NAFLD.
9.Expressions of cytokines and procalcitonin in infective endocarditis
Ruo-Xin WANG ; Liang FU ; Jin-Long ZHAO ; Zong-Hui CHEN ; Yin-Kai NI ; Feng LI
Journal of Regional Anatomy and Operative Surgery 2024;33(1):55-58
Objective To investigate the expressions of 12 cytokines(IL-1β,IL-2,IL-4,IL-5,IL-6,IL-8,IL-10,IL-12p70,IL-17,IFN-α,IFN-γ,TNF-α)and procalcitonin in patients with infective endocarditis(IE).Methods Ten IE patients admitted to our hospital from December 2021 to December 2022 were included into the IE group,10 patients with non-infectious and non-rheumatic valvular diseases who were admitted to our hospital at the same period were randomly selected as the control group,and blood sampling of all patients were conducted at admission.The expressions of 12 cytokines and blood routine indexes were detected by flow cytometry,and the level of procalcitonin was detected by ELISA.The correlations among the expression levels of cytokines in IE patients were analyzed by Pearson method and the correlations of IL-8 level and white blood cell count with procalcitonin in IE patients were analyzed by Spearman method.Results Compared with the control group,the levels of cytokines of IL-1β,IL-2,IL-6,IL-10,TNF-α,IFN-α,IFN-γ and IL-12p70 in the IE group were significantly increased(P<0.05),the white blood cell count,neutrophil percentage and procalcitonin were significantly increased(P<0.05).There was no significant difference in the percentage of monocytes between the two groups(P>0.05).IFN-α of IE patients was positively correlated with IL-2,TNF-α,IL-1β and IL-12p70,IL-2 was positively correlated with TNF-α and IL-1β,IL-12p70 was positively correlated with IFN-γ,and procalcitonin was significantly positively correlated with IL-8 and white blood cell count,with statistically significant differences(P<0.05).Conclusion The levels of IL-1β,IL-2,IL-6,IL-10,TNF-α,IFN-α,IFN-γ,IL-12p70 and procalcitonin in IE patients are significantly higher than those in the normal population,and the detections of these indicators are of guiding significance for the early diagnosis of IE and the evaluation of the severity of the disease.
10.Impacts of gut microbiota on metabolism and efficacy of timosaponin A-III
Wen-jin HUANG ; Ling-yun PAN ; Xin-xin GAO ; Wei-ze ZHU ; Hou-kai LI
Acta Pharmaceutica Sinica 2024;59(8):2372-2380
Intraperitoneal administration of timosaponin A-III (TA-III) has therapeutic effects on high-fat diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD), but oral administration has no effect. This suggests that gut microbiota may affect the oral bioavailability of TA-III. Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory subtype of MASLD. To investigate the therapeutic effect of different administration modes of TA-III on MASH and its relationship with gut microbiota metabolism. In this study, a MASH mouse model was induced by choline-deficient,

Result Analysis
Print
Save
E-mail