1.Analysis of xenobiotics in colon and immune tissues of ulcerative colitis mice after administration of Sini San by LC-MS
Yanfang CAO ; Yali WANG ; Anhui WANG ; Yongshun CHEN ; Sihan LI ; Kai FENG ; FENG YANG ; Rui SONG
Journal of China Pharmaceutical University 2025;56(1):73-79
		                        		
		                        			
		                        			Dysregulation of immune response is currently recognized as one of the important pathological factors in ulcerative colitis (UC). Based on the confirmation that the Sini San (SNS) can significantly improve the colon inflammation induced by dextran sulfate sodium sulfate (DSS) in mice, the present work systematically studied the xenobiotics in the colon and mesenteric lymph nodes, spleen, and thymus of UC mice after administration of SNS by high-performance liquid chromatography-ion trap time-of-flight mass spectrometry (HPLC-IT-TOF-MS). The results showed that, in addition to the colon, some components and their metabolites in SNS could be distributed in immune tissues, and it was found that the quality of relatively low-abundance and weakly responsive components such as saikosaponin a, paeoniflorin, and glycyrrhizic acid had the characteristics of efficient transmission to the colon and lymphoid organs. These components were very likely to be the source of pharmacodynamic substances of SNS. The findings of this study lay a foundation for the study of the efficacy and molecular mechanism of the components against ulcerative colitis, and also provide a scientific basis for the rational clinical application of SNS, which is expected to promote the secondary development of its preparations.
		                        		
		                        		
		                        		
		                        	
2.Translation and implementation of new technologies in the whole-course management of acute-on-chronic liver failure
Journal of Clinical Hepatology 2025;41(6):1025-1029
		                        		
		                        			
		                        			Acute-on-chronic liver failure (ACLF) is a form of acute hepatic insufficiency that occurs in the context of a chronic liver disease, with a relatively high mortality rate. To improve the prognosis of ACLF patients, it is essential to early identify the patients with pre-ACLF and constantly optimize and innovate treatment regimens for the disease in the progressive stage. With more than 10 years of research, the Chinese CLIF consortium has developed an early warning model for ACLF and established a system for transferring high-risk patients to tertiary hospitals. At present, the real-world study has also confirmed the consistency between the early warning model and actual conditions in clinical practice, making contributions to the early screening, diagnosis, and treatment of ACLF. The treatment options for the progressive stage of ACLF are also expanding, from the development of innovative pharmaceuticals to the use of artificial liver support and stem cell therapy, and such treatment modalities have made significant achievements in clinical studies and are expected to be implemented in the near future. The development of a more efficient diagnostic system and novel treatment modalities has led to a significant improvement in the diagnosis and treatment of ACLF. 
		                        		
		                        		
		                        		
		                        	
3.Research on a COPD Diagnosis Method Based on Electrical Impedance Tomography Imaging
Fang LI ; Bai CHEN ; Yang WU ; Kai LIU ; Tong ZHOU ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(7):1866-1877
		                        		
		                        			
		                        			ObjectiveThis paper proposes a novel real-time bedside pulmonary ventilation monitoring method for the diagnosis of chronic obstructive pulmonary disease (COPD), based on electrical impedance tomography (EIT). Four indicators—center of ventilation (CoV), global inhomogeneity index (GI), regional ventilation delay inhomogeneity (RVDI), and the ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC)—are calculated to enable the spatiotemporal assessment of COPD. MethodsA simulation of the respiratory cycles of COPD patients was first conducted, revealing significant differences in certain indicators compared to healthy individuals. The effectiveness of these indicators was then validated through experiments. A total of 93 subjects underwent multiple pulmonary function tests (PFTs) alongside simultaneous EIT measurements. Ventilation heterogeneity under different breathing patterns—including forced exhalation, forced inhalation, and quiet tidal breathing—was compared. EIT images and related indicators were analyzed to distinguish healthy individuals across different age groups from COPD patients. ResultsSimulation results demonstrated significant differences in CoV, GI, FEV1/FVC, and RVDI between COPD patients and healthy individuals. Experimental findings indicated that, in terms of spatial heterogeneity, the GI values of COPD patients were significantly higher than those of the other two groups, while no significant differences were observed among healthy individuals. Regarding temporal heterogeneity, COPD patients exhibited significantly higher RVDI values than the other groups during both quiet breathing and forced inhalation. Moreover, during forced exhalation, the distribution of FEV1/FVC values further highlighted the temporal delay heterogeneity of regional lung function in COPD patients, distinguishing them from healthy individuals of various ages. ConclusionEIT technology effectively reveals the spatiotemporal heterogeneity of regional lung function, which holds great promise for the diagnosis and management of COPD. 
		                        		
		                        		
		                        		
		                        	
4.Inhibitory Effect of Exosomes Loaded with Ginsenoside Rh2 on Growth of Hepatocellular Carcinoma Cells
Meile LI ; Ziyue ZHAO ; Kai JIN ; Yu’an XIE
Cancer Research on Prevention and Treatment 2025;52(7):578-584
		                        		
		                        			
		                        			Objective To explore the effects of exosomes loaded with ginsenoside Rh2 on the biological functions of hepatocellular carcinoma cells. Methods Both Huh7 and PLC/PRF/5 cell were equally divided into control group, exosome group (Exos group), drug group (G-Rh2 group), and exosomes-loaded-with-ginsenoside Rh2 group (Exos@G-Rh2 group). The effects of each group on the viability, clonogenic ability, migration ability, invasion ability, and apoptotic level of hepatocellular carcinoma cells were detected through CCK-8 assay, colony formation assay, cell scratch assay, Transwell assay, and flow cytometry. Results Compared with the control group, the Exos@G-Rh2 group and G-Rh2 group showed significantly decreased cell viability, clonogenic ability, and migration and invasion capabilities, along with a markedly increased cell apoptosis rate (P<0.05). These changes were more pronounced in the Exos@G-Rh2 group than in the G-Rh2 group (P<0.05). Conclusion Exos@G-Rh2 can effectively inhibit the viability and clonogenic, migration, and invasion abilities of liver cancer cells and induce cell apoptosis. This effect is stronger than that of free G-Rh2 at the same concentration.
		                        		
		                        		
		                        		
		                        	
5.Mitral valve re-repair with leaflet augmentation for mitral regurgitation in children: A retrospective study in a single center
Fengqun MAO ; Kai MA ; Kunjing PANG ; Ye LIN ; Benqing ZHANG ; Lu RUI ; Guanxi WANG ; Yang YANG ; Jianhui YUAN ; Qiyu HE ; Zheng DOU ; Shoujun LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):958-962
		                        		
		                        			
		                        			Objective  To investigate the efficacy of leaflet augmentation technique to repair the recurrent mitral valve (MV) regurgitation after mitral repair in children. Methods  A retrospective analysis was conducted on the clinical data of children who underwent redo MV repair for recurrent regurgitation after initial MV repair, using a leaflet augmentation technique combined with a standardized repair strategy at Fuwai Hospital, Chinese Academy of Medical Sciences, from 2018 to 2022. The pathological features of the MV, key intraoperative procedures, and short- to mid-term follow-up outcomes were analyzed. Results  A total of 24 patients (12 male, 12 female) were included, with a median age of 37.6 (range, 16.5–120.0) months. The mean interval from the initial surgery was (24.9±17.0) months. All children had severe mitral regurgitation preoperatively. The cardiopulmonary bypass time was (150.1±49.5) min, and the aortic cross-clamp time was (94.0±24.2) min. There were no early postoperative deaths. During a mean follow-up of (20.3±9.1) months, 3 (12.5%) patients developed moderate or severe mitral regurgitation (2 severe, 1 moderate). One (4.2%) patient died during follow-up, and one (4.2%) patient underwent a second MV reoperation. The left ventricular end-diastolic diameter was significantly reduced postoperatively compared to preoperatively [ (43.5±8.6) mm vs. (35.8±7.8)mm, P<0.001]. Conclusion  The leaflet augmentation technique combined with a standardized repair strategy can achieve satisfactory short- to mid-term outcomes for the redo mitral repair after previous MV repair. It can be considered a safe and feasible technical option for cases with complex valvular lesions and severe pathological changes.
		                        		
		                        		
		                        		
		                        	
6.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
		                        		
		                        			
		                        			ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future. 
		                        		
		                        		
		                        		
		                        	
7.Induction of apoptosis in hepatocellular carcinoma cells by polyphyllin 9 through regulating the Fas/FasL sig-naling pathway and the inhibitory effect on the growth of transplanted tumor in nude mice
Minna YAO ; Wei ZHANG ; Kai GAO ; Ruili LI ; Ying YIN ; Chao GUO ; Yunyang LU ; Haifeng TANG ; Jingwen WANG
China Pharmacy 2025;36(18):2238-2243
		                        		
		                        			
		                        			OBJECTIVE To investigate the induction of apoptosis in hepatocellular carcinoma cells by polyphyllin 9 (PP9) through the regulation of the Fas/Fas ligand (FasL) signaling pathway, and its inhibitory effect on the growth of transplanted tumor in nude mice. METHODS Based on the screening of cell lines and intervention conditions, HepG2 cells were selected as the experimental subject to investigate the effects of 2 μmol/L and 4 μmol/L PP9 treatment on cell colony formation activity, apoptosis rate, as well as the protein expressions of Fas, FasL, cleaved caspase-8 and cleaved caspase-3. Additionally, Fas inhibitor KR- 33493 was introduced to investigate the underlying mechanism of PP9’s anti-hepatocellular carcinoma activity. Using HepG2 cell tumor-bearing nude mice model as the object, and 5-fluorouracil (20 mg/kg) as the positive control, the effects of 10 mg/kg PP9 on tumor volume, tumor mass, and the protein expressions of the nuclear proliferation-associated antigen Ki-67 and cleaved caspase-3 in tumor-bearing nude mice were investigated. RESULTS Compared with the control group, 2, 4 μmol/L PP9 significantly decreased the number of clones and the clone formation rate of cells, but significantly increased the apoptosis rate, the protein expressions of Fas, FasL, cleaved caspase-8 and cleaved caspase-3 (P<0.05 or P<0.01). However, the combination of Fas inhibitor KR-33493 could significantly reverse the effect of PP9 on the up-regulation of proteins related to the Fas/FasL signaling pathway (P<0.01). Compared with the control group, the tumor volume (on day 27), mass and protein expression of Ki- 67 in nude mice of the PP9 group were significantly decreased, while the protein expression of cleaved caspase-3 was significantly increased (P<0.01). CONCLUSIONS PP9 can induce apoptosis of HepG2 cells by activating the Fas/FasL signaling pathway. Meanwhile, PP9 can also effectively inhibit the growth of transplanted tumors in nude mice.
		                        		
		                        		
		                        		
		                        	
8.Mitochondrial Transfer Promotes Immune Escape in Osteosarcoma Cells: Mechanisms and Research Advances
Qishun QIN ; Xingsheng WANG ; Kai LI ; Pei PENG ; Shihong XU
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1250-1259
Osteosarcoma is a highly aggressive malignant bone tumor whose immuno evasion mechanisms play a pivotal role in tumor progression and therapeutic resistance. Recent studies have identified mitochondrial transfer as a novel mode of intercellular communication that significantly influences metabolic reprogramming and immune evasion in osteosarcoma cells. This mechanism operates through three principal pathways: (1) enhancing energy metabolic efficiency in tumor cells; (2) mitigating intracellular oxidative stress; and (3) modulating immune checkpoint molecule expression. Collectively, these alterations impair host immune surveillance while promoting tumor proliferation, invasion, and distant metastasis through metabolic remodeling, immune tolerance induction, and tumor microenvironment reconstruction. This review systematically elucidates the molecular mechanisms by which mitochondrial transfer regulates immune evasion in osteosarcoma and its dynamic impact on the tumor microenvironment. Furthermore, we discuss the translational potential of targeting this pathway for precision therapy and outline future research directions in this emerging field.
9.Insights on Peripheral Blood Biomarkers for Parkinson’s Disease
Yu-Meng LI ; Jing-Kai LIU ; Zi-Xuan CHEN ; Yu-Lin DENG
Progress in Biochemistry and Biophysics 2025;52(1):72-87
		                        		
		                        			
		                        			Parkinson’s disease (PD) is a common neurodegenerative disorder with profound impact on patients’ quality of life and long-term health, and early detection and intervention are particularly critical. In recent years, the search for precise and reliable biomarkers has become one of the key strategies to effectively address the clinical challenges of PD. In this paper, we systematically evaluated potential biomarkers, including proteins, metabolites, epigenetic markers, and exosomes, in the peripheral blood of PD patients. Protein markers are one of the main directions of biomarker research in PD. In particular, α‑synuclein and its phosphorylated form play a key role in the pathological process of PD. It has been shown that aggregation of α-synuclein may be associated with pathologic protein deposition in PD and may be a potential marker for early diagnosis of PD. In terms of metabolites, uric acid, as a metabolite, plays an important role in oxidative stress and neuroprotection in PD. It has been found that changes in uric acid levels may be associated with the onset and progression of PD, showing its potential as an early diagnostic marker. Epigenetic markers, such as DNA methylation modifications and miRNAs, have also attracted much attention in Parkinson’s disease research. Changes in these markers may affect the expression of PD-related genes and have an important impact on the onset and progression of the disease, providing new research perspectives for the early diagnosis of PD. In addition, exosomes, as a potential biomarker carrier for PD, are able to carry a variety of biomolecules involved in intercellular communication and pathological regulation. Studies have shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide a new breakthrough for early diagnosis. It has been shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide new breakthroughs in early diagnosis. In summary, through in-depth evaluation of biomarkers in the peripheral blood of PD patients, this paper demonstrates the important potential of these markers in the early diagnosis of PD and in the study of pathological mechanisms. Future studies will continue to explore the clinical application value of these biomarkers to promote the early detection of PD and individualized treatment strategies. 
		                        		
		                        		
		                        		
		                        	
10.The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
Hui-Lin XU ; Huan-Jun XI ; Tao DUAN ; Jing LI ; Dan-Dan LI ; Kai WANG ; Chun-Yan ZHU
Progress in Biochemistry and Biophysics 2025;52(1):223-232
		                        		
		                        			
		                        			ObjectiveAutism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interaction, restricted and repetitive behaviors. Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits, which are closely related to the core symptoms of ASD. Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities. Therefore, this study explores the behavior of children with ASD in capturing attention to changes in topological properties. MethodsOur study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing (TD) age-matched controls. In an attention capture task, we recorded the saccadic behaviors of children with ASD and TD in response to topological change (TC) and non-topological change (nTC) stimuli. Saccadic reaction time (SRT), visual search time (VS), and first fixation dwell time (FFDT) were used as indicators of attentional bias. Pearson correlation tests between the clinical assessment scales and attentional bias were conducted. ResultsThis study found that TD children had significantly faster SRT (P<0.05) and VS (P<0.05) for the TC stimuli compared to the nTC stimuli, while the children with ASD did not exhibit significant differences in either measure (P>0.05). Additionally, ASD children demonstrated significantly less attention towards the TC targets (measured by FFDT), in comparison to TD children (P<0.05). Furthermore, ASD children exhibited a significant negative linear correlation between their attentional bias (measured by VS) and their scores on the compulsive subscale (P<0.05). ConclusionThe results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection. This atypical attention may affect the child’s cognitive and behavioral development, thereby impacting their social communication and interaction. In sum, our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail