1.Geographical Inference Study of Dust Samples From Four Cities in China Based on ITS2 Sequencing
Wen-Jun ZHANG ; Yao-Sen FENG ; Jia-Jin PENG ; Kai FENG ; Ye DENG ; Ke-Lai KANG ; Le WANG
Progress in Biochemistry and Biophysics 2025;52(4):970-981
ObjectiveIn the realm of forensic science, dust is a valuable type of trace evidence with immense potential for intricate investigations. With the development of DNA sequencing technologies, there is a heightened interest among researchers in unraveling the complex tapestry of microbial communities found within dust samples. Furthermore, striking disparities in the microbial community composition have been noted among dust samples from diverse geographical regions, heralding new possibilities for geographical inference based on microbial DNA analysis. The pivotal role of microbial community data from dust in geographical inference is significant, underscoring its critical importance within the field of forensic science. This study aims to delve deeply into the nuances of fungal community composition across the urban landscapes of Beijing, Fuzhou, Kunming, and Urumqi in China. It evaluates the accuracy of biogeographic inference facilitated by the internal transcribed spacer 2 (ITS2) fungal sequencing while concurrently laying a robust foundation for the operational integration of environmental DNA into geographical inference mechanisms. MethodsITS2 region of the fungal genomes was amplified using universal primers known as 5.8S-Fun/ITS4-Fun, and the resulting DNA fragments were sequenced on the Illumina MiSeq FGx platform. Non-metric multidimensional scaling analysis (NMDS) was employed to visually represent the differences between samples, while analysis of similarities (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) were utilized to statistically evaluate the dissimilarities in community composition across samples. Furthermore, using Linear Discriminant Analysis Effect Size (LEfSe) analysis to identify and filter out species that exhibit significant differences between various cities. In addition, we leveraged SourceTracker to predict the geographic origins of the dust samples. ResultsAmong the four cities of Beijing, Fuzhou, Kunming and Urumqi, Beijing has the highest species richness. The results of species annotation showed that there were significant differences in the species composition and relative abundance of fungal communities in the four cities. NMDS analysis revealed distinct clustering patterns of samples based on their biogeographic origins in multidimensional space. Samples from the same city exhibited clear clustering, while samples from different cities showed separation along the first axis. The results from ANOSIM and PERMANOVA confirmed the significant differences in fungal community composition between the four cities, with the most pronounced distinctions observed between Fuzhou and Urumqi. Notably, the biogeographic origins of all known dust samples were successfully predicted. ConclusionSignificant differences are observed in the fungal species composition and relative abundance among the cities of Beijing, Fuzhou, Kunming, and Urumqi. Employing fungal ITS2 sequencing on dust samples from these urban areas enables accurate inference of biogeographical locations. The high feasibility of utilizing fungal community data in dust for biogeographical inferences holds particular promise in the field of forensic science.
2.Analysis of xenobiotics in colon and immune tissues of ulcerative colitis mice after administration of Sini San by LC-MS
Yanfang CAO ; Yali WANG ; Anhui WANG ; Yongshun CHEN ; Sihan LI ; Kai FENG ; FENG YANG ; Rui SONG
Journal of China Pharmaceutical University 2025;56(1):73-79
Dysregulation of immune response is currently recognized as one of the important pathological factors in ulcerative colitis (UC). Based on the confirmation that the Sini San (SNS) can significantly improve the colon inflammation induced by dextran sulfate sodium sulfate (DSS) in mice, the present work systematically studied the xenobiotics in the colon and mesenteric lymph nodes, spleen, and thymus of UC mice after administration of SNS by high-performance liquid chromatography-ion trap time-of-flight mass spectrometry (HPLC-IT-TOF-MS). The results showed that, in addition to the colon, some components and their metabolites in SNS could be distributed in immune tissues, and it was found that the quality of relatively low-abundance and weakly responsive components such as saikosaponin a, paeoniflorin, and glycyrrhizic acid had the characteristics of efficient transmission to the colon and lymphoid organs. These components were very likely to be the source of pharmacodynamic substances of SNS. The findings of this study lay a foundation for the study of the efficacy and molecular mechanism of the components against ulcerative colitis, and also provide a scientific basis for the rational clinical application of SNS, which is expected to promote the secondary development of its preparations.
3.Protective effect of Qingjie Huagong decoction on pancreatic tissue of mice with severe acute pancreatitis by regulating the NOD-like receptor protein 3/Toll-like receptor 4/nuclear factor-kappa B signaling pathway
Minchao FENG ; Baijun QIN ; Fang LUO ; Kai LI ; Ning WANG ; Guozhong CHEN ; Xiping TANG
Journal of Clinical Hepatology 2024;40(2):343-350
ObjectiveTo investigate the therapeutic effect of Qingjie Huagong decoction (QJHGD) on a mouse model of severe acute pancreatitis (SAP) and the mechanism of action of QJHGD against inflammatory response. MethodsA total of 36 male C57BL/6J mice were randomly divided into blank group, model group, Western medicine group (ulinastatin), and low-, middle-, and high-dose QJHGD groups, with 6 mice in each group. All mice except those in the blank group were given 5% sodium taurocholate by retrograde pancreaticobiliary injection to establish a model of SAP. After modeling, the mice in the low-, middle-, and high-dose groups were given QJHGD (1, 2, and 4 g/kg, respectively) by gavage, and those in the Western medicine group were given intraperitoneal injection of ulinastatin (5×104 U/kg), for 7 days in total. HE staining was used to observe the histopathological changes of the pancreas; ELISA was used to measure the levels of α-amylase, lipase, interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) in mice; RT-qPCR was used to measure the mRNA expression levels of NOD-like receptor protein3 (NLRP3), Toll-like receptor 4 (TLR4), and nuclear factor-kappa B (NF-κB) in pancreatic tissue; immunohistochemistry was used to measure the positive expression rates of NLRP3, TLR4, and NF-κB in pancreatic tissue; Western blot was used to measure the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6. An analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the blank group, the model group had diffuse destruction of pancreatic tissue structure, focal dilatation of pancreatic lobular septum, pancreatic acinar atrophy, and massive inflammatory cell infiltration, as well as significant increases in the content of α-amylase, lipase, IL-1β, IL-6, IL-8, IL-18, and TNF-α (all P<0.05), the mRNA expression levels and positive expression rates of NLRP3, TLR4, and NF-κB (all P<0.05), and the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6 (all P<0.05). Compared with the model group, the low-, middle-, and high-dose QJHGD groups and the Western medicine group had slightly tighter and more intact structure of pancreatic tissue, ordered arrangement of pancreatic acinar cells, a small amount of inflammatory cell infiltration, and hemorrhagic foci of pancreatic lobules, as well as significant reductions in the content of α-amylase, lipase, IL-1β, IL-6, IL-8, IL-18, and TNF-α (all P<0.05), the mRNA expression levels and positive expression rates of NLRP3, TLR4, and NF-κB (all P<0.05), and the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6 (all P<0.05). ConclusionQJHGD may exert a protective effect on the pancreatic tissue of SAP mice by inhibiting the activation of NLRP3/TLR4/NF-κB signaling pathway-related proteins, reducing the release of inflammatory mediators, and preventing the enhancement of inflammatory cascade response.
4.Mechanism by which exercise improves inhibitory control and drug craving in methamphetamine abstinent patients
Shuaixiong LIAO ; Kai DENG ; Nan BAI ; Wenliang YANG ; Feng WANG ; Zongji HAO ; Xueying LI
Chinese Journal of Tissue Engineering Research 2024;28(27):4390-4396
BACKGROUND:Inhibitory control and drug craving are the core elements of evaluating drug withdrawal in methamphetamine addicts,which has attracted much attention in academic circles.As we all know,in order to achieve complete abstinence from drug addiction,the key is to restore the damaged inhibition and control function of drug addicts and effectively reduce the craving for drugs. OBJECTIVE:To systematically analyze the relationship between exercise and methamphetamine abstinence inhibitory control and drug craving,to find out an effective exercise intervention scheme that can promote methamphetamine abstinence,and to further explore the internal mechanism of exercise,in order to provide theoretical support and applied reference for the future use of exercise in drug withdrawal. METHODS:CNKI,WanFang,VIP,Web of Science,and PubMed databases were searched for relevant literature using the keywords of"exercise,physical activity,methamphetamine,inhibitory function,craving,addiction"in Chinese and"sport*,exercise,methamphetamine,drug craving,executive function,addiction"in English.According to the inclusion and exclusion criteria,86 documents were finally included for review. RESULTS AND CONCLUSION:In terms of inhibitory control in methamphetamine abstinent individuals,either acute and long-term moderate-intensity aerobic exercise or acute high-intensity interval training can significantly improve the inhibitory control capacity of methamphetamine abstinent individuals.For long-term aerobic exercise,aerobic group exercise or full-body comprehensive exercise is more effective.If the exercise format is power cycling,it is recommended to increase the frequency of exercise intervention.In terms of the drug craving intensity in methamphetamine abstinent individuals,acute moderate-intensity aerobic exercise and resistance training,as well as long-term moderate-intensity,high-intensity,or progressive load aerobic and resistance training,can effectively reduce the drug craving in methamphetamine abstinent individuals.Exercise exerts intrinsic regulatory effects on methamphetamine-mediated addiction.Exercise can influence the expression of tyrosine hydroxylase in the brain's ventral tegmental area,thereby stimulating the expression of dopamine receptor coupling proteins and promoting dopamine synthesis in the brain's reward regions,thereby compensating for dopamine depletion caused by methamphetamine addiction.Furthermore,exercise can also regulate protein kinase A inhibitors,affecting the protein kinase A signaling pathway mediated by dopamine D1 receptors,by inhibiting protein kinase A,thus affecting cAMP response element-binding protein and regulating methamphetamine addiction.Additionally,exercise can also,at the genetic level,affect the expression of the c-fos gene in the brain's nucleus accumbens region,activate a subset of glutamatergic neurons in this area,generate a rewarding effect,and thus improve methamphetamine addiction.Although current research has confirmed the relationship between exercise and methamphetamine addiction and has clarified the brain mechanisms underlying the effects of exercise,whether there are other brain regulatory pathways for the effects of exercise remains to be explored through more scientifically rigorous animal or human experiments,starting from the cellular or molecular level.
5.Analysis of the Treatment Strategy of Heart Failure with Preserved Ejection Fraction Based on ZHANG Boli's Theory of “Damp-turbidity and Phlegm-rheum Type of Diseases”
Guangning QIN ; Xinyao JIN ; Yaoyuan LIU ; Kai WANG ; Feng JIANG ; Ming HUANG
Journal of Traditional Chinese Medicine 2024;65(1):35-38
Professor ZHANG Boli believed that the core pathogenesis of heart failure with preserved ejection fraction (HFpEF) is weak pulse at yang and wiry pulse at yin. By referring to the theory of “damp-turbidity and phlegm-rheum type of diseases”, he proposed that yin pathogens of damp-turbidity and phlegm-rheum may damage yang qi in each stage of HFpEF, thus aggravating the trend of weak pulse at yang and wiry pulse at yin, which played an important role in the deterioration of HFpEF. Therefore, Professor ZHANG Boli advocated that importance should be attached to the elimination of yin pathogen and the protection of yang qi during the various stages of HFpEF in order to delay the aggravation of weak pulse at yang and wiry pulse at yin; he put forward the idea of staged treatment that “yin pathogen should be dispelled and yang qi should be demonstrated”; and he formulated the treatment strategy of treating the disease as early as possible, eliminating pathogens and protecting yang, interrupting the disease trend, using warm-like medicinals, and activating blood circulation, to enrich the theoretical system of traditional Chinese medicine in the treatment of HFpEF.
6.Application of contrast-enhanced ultrasound in differential diagnosis of ≤ 3 cm hepatocellular carcinoma and focal nodular hyperplasia of the liver
Kai YUAN ; Zhengbiao JI ; Feng MAO ; Weibin ZHANG ; Haixia YUAN ; Wenping WANG
Chinese Journal of Clinical Medicine 2024;31(6):945-950
Objective To investigate the diagnosis value of contrast-enhanced ultrasound (CEUS) in the differentiation of hepatocellular carcinoma (HCC) and focal nodular hyperplasia (FNH) of the liver with ≤3 cm of maximum diameter. Methods The image characteristics in 48 lesions of HCC with maximum diameter≤3 cm and 48 lesions of FNH with maximum diameter≤3 cm confirmed by pathology were retrospectively analyzed. The phase changes, enhancement patterns and enhancement characteristics of the lesions in the two groups were compared. Results All lesions in the two groups showed high-echo in the arterial phase. The contrast arrival time in HCC group and FNH group was 17(15, 19) s and 15(12, 18.75) s (P=0.017); the peak time in the two groups was 21(17, 25) s and 22(19, 26) s (P>0.05). The main enhancement patterns of HCC group and FNH group in arterial phase were homogeneous enhancement and centrifugal enhancement, respectively. All HCC lesions showed homogeneous enhancement, which was significantly higher than FNH (2.08%, P<0.05); 97.91% of FHN lesions showed centrifugal enhancement, which was higher that of HCC lesions (0, P<0.05). During the CEUS process, 87.5% of HCC lesions showed “rapid fill-in and rapid wash-out”, which was significantly higher than that of FNH lesions(8.33%,P<0.05); 91.67% of FNH lesions showed “rapid fill-in” and “synchronous/slow wash-out” which was significantly higher than that of HCC lesions (12.50%,P<0.05). Conclusion CEUS is helpful in the differential diagnosis of FNH and HCC with maximum diameter≤3 cm.
7.Research progress on the mechanism of metachronous gastric cancer after endoscopic submucosal dissection and Helicobacter pylori eradication in early gastric cancer
Xin-Yue HU ; Bin WANG ; Tao WANG ; Kai-Jun LIU ; Liang-Zhi WEN ; Dong-Feng CHEN
Medical Journal of Chinese People's Liberation Army 2024;49(1):108-114
Helicobacter pylori(HP)infection is a Class Ⅰ carcinogen in gastric cancer,closely related to the occurrence of gastric cancer.Many studies have shown that HP eradication has a preventive effect on gastric cancer.However,2.7%-6.1%of patients with early gastric cancer who have been eradicated after endoscopic submucosal dissection(ESD)can still develop metachronous gastric cancer(MGC),and the mechanism of its occurrence is still unclear.In this review,the atrophy of gastric mucosa and intestinal metaplasia cannot be completely reversed after HP eradication,the excessive proliferation of gastric mucosa epithelial cells,the accumulation of genetic abnormalities,the homeostasis imbalance of the epigenetic group,changes in immune microenvironment,the abnormality of stem cells in gastric mucosa,chromatin accessibility,and changes in chromosome remodeling were discussed in the mechanism of carcinogenesis caused by the above molecular changes after ESD and HP eradication in early gastric cancer.
8.C-X3-C motif chemokine ligand 1/C-X3-C motif chemokine receptor 1 pathway in the recovery of memory function in hemorrhagic shock/resuscitation rats
Xiao-Jun WU ; Ri-Xing WANG ; Fang-Chong LIN ; You-Kai LÜ ; Qi-Tao FENG ; Tian-Qi YUN
Acta Anatomica Sinica 2024;55(2):158-166
Objective To investigate the effect of microglia activation regulated by C-X3-C motif chemokine ligand 1(CX3CL1)-C-X3-C motif chemokine receptor 1(CX3CR1)pathway on memory function in hemorrhagic shock/resuscitation rats.Methods The experiment was divided into two parts.In the first part,the rats were randomly divided into sham group,model-0.5 hour group,model-1.5 hour group,model-3 hour group,10 rats in each group.There were differences in the time of hemorrhagic shock among each group.In the second part,rats were randomly divided into control group and CX3CL1 group,10 rats in each group.The rats in CX3CL1 group were treated with CX3CL1 protein factor(intraventricular injection),and the rats in control group were treated with saline.All rats were trained in Morris water maze experiments before model construction,and tests of Morris water maze experiments were carried out after 4 days of model construction.After completion,the whole brains were taken for HE staining and immunohistochemical staining.Cerebrospinal fluid was taken for detection of inflammatory cytokines,and hippocampus tissues were taken for Real-time PCR detection and Western blotting detection.Results Compared with the sham group,the escape latency of rats in model group increased,the number of platform crossings and the resident time in the third quadrant decreased.The neuronal state was impaired in HE staining in model group.In addition,compared with the sham group,the expression of ionized calcium binding adaptor molecule-1(Iba1)in the brain of the rats in model group increased,the contents of tumor necrosis factor-α(TNF-α)and interleukin(IL)-6 in the cerebrospinal fluid increased,and the M1-type microglia markers CD16,TNF-α,IL-1β and inducible nitric oxide synthase(iNOS)mRNA content increased.At the same time,compared with the sham group,the expressions of CX3CL1 and CX3CR1 in the brain of model group decreased,and the expressions of phosphorylated nuclear factor-κB(p-NF-κB)and nucleotide binding oligomerization domain(NOD)-like receptor protein 3(NLRP3)increased.However,compared with the control group,rats in CX3CL1 group had reduced escape latency,increased platform crossing times and quadrantⅢresident time,and recovered neuronal states.In addition,the expression of Iba1 in the brain of CX3CL1 group decreased,the contents of TNF-α and IL-6 in the cerebrospinal fluid decreased,the mRNA contents of M1-type microglia markers like CD16,TNF-α,IL-1β and iNOS decreased,and the mRNA contents of markers of M2-type microglia glial like CD206,transforming growth factor-β(TGF-β),arginase-1(Arg1),Chitinase 3-like protein 1(Ym 1)increased.Conclusion CX3CL1 can help inhibit the excessive activation of microglia,induce the polarization of microglia to M2 type,inhibit the polarization of M1 type,reduce the release of inflammatory cytokines,and alleviate the memory function damage induced by hemorrhagic shock/resuscitation.
9.A Rapid Non-invasive Method for Skin Tumor Tissue Early Detection Based on Bioimpedance Spectroscopy
Jun-Wen PENG ; Song-Pei HU ; Zhi-Yang HONG ; Li-Li WANG ; Kai LIU ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2024;51(5):1161-1173
ObjectiveIn recent years, with the intensification of environmental issues and the depletion of ozone layer, incidence of skin tumors has also significantly increased, becoming one of the major threats to people’s lives and health. However, due to factors such as high concealment in the early stage of skin tumors, unclear symptoms, and large human skin area, most cases are detected in the middle to late stage. Early detection plays a crucial role in postoperative survival of skin tumors, which can significantly improve the treatment and survival rates of patients. We proposed a rapid non-invasive electrical impedance detection method for early screening of skin tumors based on bioimpedance spectroscopy (BIS) technology. MethodsFirstly, we have established a complete skin stratification model, including stratum corneum, epidermis, dermis, and subcutaneous tissue. And the numerical analysis method was used to investigate the effect of dehydrated and dry skin stratum corneum on contact impedance in BIS measurement. Secondly, differentiation effect of different diameter skin tumor tissues was studied using a skin model after removing the stratum corneum. Then, in order to demonstrate that BIS technology can be used for detecting the microinvasion stage of skin tumors, we conducted a simulation study on the differentiation effect of skin tumors under different infiltration depths. Finally, in order to verify that the designed BIS detection system can distinguish between tumor microinvasion periods, we conducted tumor invasion experiments using hydrogel treated pig skin tissue. ResultsThe simulation results show that a dry and high impedance stratum corneum will bring about huge contact impedance, which will lead to larger measurement errors and affect the accuracy of measurement results. We extracted the core evaluation parameter of relaxed imaginary impedance (Zimag-relax) from the simulation results of the skin tumor model. When the tumor radius (Rtumor) and invasion depth (h)>1.5 mm, the designed BIS detection system can distinguish between tumor tissue and normal tissue. At the same time, in order to evaluate the degree of canceration in skin tissue, the degree of tissue lesion (εworse) is defined by the relaxed imaginary impedance (Zimag-relax) of normal and tumor tissue (εworse is the percentage change in virtual impedance of tumor tissue relative to that of normal tissue), and we fitted a Depth-Zimag-relax curve using relaxation imaginary impedance data at different infiltration depths, which can be applied to quickly determine the infiltration depth of skin tumors after being supplemented with a large amount of clinical data in the future. The experimental results proved that when εworse=0.492 0, BIS could identify microinvasive tumor tissue, and the fitting curve correction coefficient of determination was 0.946 8, with good fitting effect. The simulation using pig skin tissue correlated the results of real human skin simulation with the experimental results of pig skin tissue, proving the reliability of this study, and laying the foundation for further clinical research in the future. ConclusionOur proposed BIS method has the advantages of fast, real-time, and non-invasive detection, as well as high sensitivity to skin tumors, which can be identified during the stage of tumor microinvasion.
10.Polycystin-2 Ion Channel Function and Pathogenesis in Autosomal Dominant Polycystic Kidney
Kai WANG ; Yuan HUANG ; Ce-Fan ZHOU ; Jing-Feng TANG ; Xing-Zhen CHEN
Progress in Biochemistry and Biophysics 2024;51(1):47-58
Polycystin-2 (also known as PC2, TRPP2, PKD2) is a major contributor to the underlying etiology of autosomal dominant polycystic kidney disease (ADPKD), which is the most prevalent monogenic kidney disease in the world. As a transient receptor potential (TRP) channel protein, PC2 exhibits cation-permeable, Ca2+-dependent channel properties, and plays a crucial role in maintaining normal Ca2+ signaling in systemic physiology, particularly in ADPKD chronic kidney disease. Structurally, PC2 protein consists of six transmembrane structural domains (S1-S6), a polycystin-specific “tetragonal opening for polycystins” (TOP) domain located between the S1 and S2 transmembrane structures, and cytoplasmic N- and C-termini. Although the cytoplasmic N-terminus and C-terminus of PC2 may not be significant in the gating of PC2 channels, there is still much protein structural information that needs to be thoroughly investigated, including the regulation of channel function and the assembly of homotetrameric ion channels. This is further supported by the presence of human disease-associated mutation sites on the PC2 structure. Moreover, PC2 synthesized in the endoplasmic reticulum is enriched in specific subcellular localization via membrane transport and can assemble itself into homotetrameric ion channels, as well as form heterotrimeric receptor-ion channel complexes with other proteins. These complexes are involved in a wide range of physiological functions, including the regulation of mechanosensation, cell polarity, cell proliferation, and apoptosis. In particular, PC2 assembles with chaperone proteins to form polycystic protein complexes that affect Ca2+ transport in cell membranes, cilia, endoplasmic reticulum, and mitochondria, and are involved in activating cell fate-related signaling pathways, particularly cell differentiation, proliferation, survival, and apoptosis, and more recently, autophagy. This leads to a shift of cystic cells from a normal uptake, quiescent state to a pathologically secreted, proliferative state. In conclusion, the complex structural and functional roles of PC2 highlight its critical importance in the pathogenesis of ADPKD, making it a promising target for therapeutic intervention.

Result Analysis
Print
Save
E-mail