1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
6.Effect of different blood pressure stratification on renal function in diabetic population
Yong-Gang CHEN ; Shou-Ling WU ; Jin-Feng ZHANG ; Shuo-Hua CHEN ; Li-Wen WANG ; Kai YANG ; Hai-Liang XIONG ; Ming GAO ; Chun-Yu JIANG ; Ye-Qiang LIU ; Yan-Min ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(6):663-669
		                        		
		                        			
		                        			Objective To investigate the effect of varying blood pressure stratification on renal function in the diabetic population.Methods A prospective cohort study was conducted,enrolling 9 489 diabetic patients from a total of 101 510 Kailuan Group employees who underwent health examinations between July 2006 and October 2007.The follow-up period was(8.6±4.0)years.Participants were categorized into four groups based on their baseline blood pressure levels:normal blood pressure(systolic blood pressure<120 mmHg and diastolic blood pressure<80 mmHg),elevated blood pressure(systolic blood pressure 120-130 mmHg and diastolic blood pressure<80 mmHg),stage 1 hypertension(systolic blood pressure 130-140 mmHg and/or diastolic blood pressure 80-90 mmHg),and stage 2 hypertension(systolic blood pressure≥140 mmHg and/or diastolic blood pressure≥90 mmHg).The incidence density of chronic kidney disease(CKD)was compared among these groups.A multivariate Cox proportional hazards regression model was employed to assess the effects of different blood pressure levels on renal function in diabetic patients,with the stability of the results confirmed using a multivariate time-dependent Cox proportional hazards model.Sensitivity analysis was conducted after excluding cases of cardiovascular disease(CVD)during follow-up,and cases using antihypertensive and antidiabetic medications at baseline.Results(1)At baseline,stage 1 hypertension patients demonstrated statistically significant higher differences with age and body mass index(BMI)compared to normal blood pressure group(P<0.05).(2)By the end of the follow-up,2 294 cases of CKD were identified,including 1 117 cases of estimated glomerular filtration rate(eGFR)decline and 1 575 cases of urinary protein.The incidences density of CKD,eGFR decline and urinary protein for stage 1 hypertension group were 39.4,16.3 and 25.5 per thousand person-years,respectively,all of which were statistically significant different from normal blood pressure group(log-rank test,P<0.01).(3)Multivariate Cox regression analysis revealed that,compared to the normal blood pressure group,stage 1 hypertension was associated with a 29%increased risk of CKD(HR=1.29,95%CI 1.09-1.52)and a 40%increased risk of eGFR decline(HR=1.40,95%CI 1.08-1.80)in diabetic individuals.Conclusion Stage 1 hypertension significantly increases the risk of CKD and eGFR decline in diabetic individuals,with a particularly notable effect on the risk of eGFR decline.
		                        		
		                        		
		                        		
		                        	
7.Clinical Features and Prognosis of Acute T-cell Lymphoblastic Leukemia in Children——Multi-Center Data Analysis in Fujian
Chun-Ping WU ; Yong-Zhi ZHENG ; Jian LI ; Hong WEN ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Xing-Guo WU ; Xue-Ling HUA ; Hao ZHENG ; Zai-Sheng CHEN ; Shao-Hua LE
Journal of Experimental Hematology 2024;32(1):6-13
		                        		
		                        			
		                        			Objective:To evaluate the efficacy of acute T-cell lymphoblastic leukemia(T-ALL)in children and explore the prognostic risk factors.Methods:The clinical data of 127 newly diagnosed children with T-ALL admitted to five hospitals in Fujian province from April 2011 to December 2020 were retrospectively analyzed,and compared with children with newly diagnosed acute precursor B-cell lymphoblastic leukemia(B-ALL)in the same period.Kaplan-Meier analysis was used to evaluate the overall survival(OS)and event-free survival(EFS),and COX proportional hazard regression model was used to evaluate the prognostic factors.Among 116 children with T-ALL who received standard treatment,78 cases received the Chinese Childhood Leukemia Collaborative Group(CCLG)-ALL 2008 protocol(CCLG-ALL 2008 group),and 38 cases received the China Childhood Cancer Collaborative Group(CCCG)-ALL 2015 protocol(CCCG-ALL 2015 group).The efficacy and serious adverse event(SAE)incidence of the two groups were compared.Results:Proportion of male,age ≥ 10 years old,white blood cell count(WBC)≥ 50 × 109/L,central nervous system leukemia,minimal residual disease(MRD)≥ 1%during induction therapy,and MRD ≥ 0.01%at the end of induction in T-ALL children were significantly higher than those in B-ALL children(P<0.05).The expected 10-year EFS and OS of T-ALL were 59.7%and 66.0%,respectively,which were significantly lower than those of B-ALL(P<0.001).COX analysis showed that WBC ≥ 100 x 109/L at initial diagnosis and failure to achieve complete remission(CR)after induction were independent risk factors for poor prognosis.Compared with CCLG-ALL 2008 group,CCCG-ALL 2015 group had lower incidence of infection-related SAE(15.8%vs 34.6%,P=0.042),but higher EFS and OS(73.9%vs 57.2%,PEFS=0.090;86.5%vs 62.3%,PoS=0.023).Conclusions:The prognosis of children with T-ALL is worse than children with B-ALL.WBC ≥ 100 × 109/L at initial diagnosis and non-CR after induction(especially mediastinal mass has not disappeared)are the risk factors for poor prognosis.CCCG-ALL 2015 regimen may reduce infection-related SAE and improve efficacy.
		                        		
		                        		
		                        		
		                        	
8.The Factors Related to Treatment Failure in Children with Acute Lymphoblastic leukemia——Analysis of Multi-Center Data from Real World in Fujian Province
Chun-Xia CAI ; Yong-Zhi ZHENG ; Hong WEN ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Xing-Guo WU ; Shao-Hua LE ; Hao ZHENG
Journal of Experimental Hematology 2024;32(6):1656-1664
		                        		
		                        			
		                        			Objective:To analyze the related factors of treatment failure in children with acute lymphoblastic leukemia (ALL)in real-world.Methods:The clinical data of 1414 newly diagnosed children with ALL admitted to five hospital in Fujian province from April 2011 to December 2020 were retrospectively analyzed.Treatment failure was defined as relapse,non-relapse death,and secondary tumor.Results:Following-up for median time 49.7 (0.1-136. 9)months,there were 269 cases (19.0%)treatment failure,including 140 cases (52.0%)relapse,and 129 cases (48.0%)non-relapse death.Cox univariate and multivariate analysis showed that white WBC≥50 ×109/L at newly diagnosis,acute T-cell lymphoblastic leukemia (T-ALL),BCR-ABL1,KMT2A-rearrangement and poor early treatment response were independent risk factor for treatment failure (all HR>1.000,P<0.05).The 5-year OS of 140 relapsed ALL patients was only 23.8%,with a significantly worse prognosis for very early relapse (relapse time within 18 months of diagnosis).Among 129 patients died from non-relapse death,71 cases (26.4%)were died from treatment-related complications,56 cases (20.8%)died from treatment abandonment,and 2 cases (0.7%)died from disease progression.Among them,treatment-related death were significantly correlated with chemotherapy intensity,while treatment abandonment were mainly related to economic factors.Conclusion:The treatment failure of children with ALL in our province is still relatively high,with relapse being the main cause of treatment failure,while treatment related death and treatment abandonment caused by economic factors are the main causes of non-relapse related death.
		                        		
		                        		
		                        		
		                        	
9.Clinical features and prognosis of children with fungal bloodstream infection following chemotherapy for acute leukemia
Kai-Zhi WENG ; Chun-Ping WU ; Shu-Quan ZHUANG ; Shu-Xian HUANG ; Xiao-Fang WANG ; Yong-Zhi ZHENG
Chinese Journal of Contemporary Pediatrics 2024;26(10):1086-1092
		                        		
		                        			
		                        			Objective To investigate the clinical features and prognosis of children with fungal bloodstream infection(BSI)following chemotherapy for acute leukemia(AL).Methods A retrospective analysis was performed on 23 children with fungal BSI following chemotherapy for AL in three hospitals in Fujian Province,China,from January 2015 to December 2023.Their clinical features and prognosis were analyzed.Results Among all children following chemotherapy for AL,the incidence rate of fungal BSI was 1.38%(23/1 668).At the time of fungal BSI,87%(20/23)of the children had neutrophil deficiency for more than one week,and all the children presented with fever,while 22%(5/23)of them experienced septic shock.All 23 children exhibited significant increases in C-reactive protein and procalcitonin levels.A total of 23 fungal isolates were detected in peripheral blood cultures,with Candida tropicalis being the most common isolate(52%,12/23).Caspofungin or micafungin combined with liposomal amphotericin B had a relatively high response rate(75%,12/16),and the median duration of antifungal therapy was 3.0 months.The overall mortality rate in the patients with fungal BSI was 35%(8/23),and the attributable death rate was 22%(5/23).Conclusions Fungal BSI following chemotherapy in children with AL often occurs in children with persistent neutrophil deficiency and lacks specific clinical manifestations.The children with fungal BSI following chemotherapy for AL experience a prolonged course of antifungal therapy and have a high mortality rate,with Candida tropicalis being the most common pathogen.
		                        		
		                        		
		                        		
		                        	
10.Safety of high-carbohydrate fluid diet 2 h versus overnight fasting before non-emergency endoscopic retrograde cholangiopancreatography: A single-blind, multicenter, randomized controlled trial
Wenbo MENG ; W. Joseph LEUNG ; Zhenyu WANG ; Qiyong LI ; Leida ZHANG ; Kai ZHANG ; Xuefeng WANG ; Meng WANG ; Qi WANG ; Yingmei SHAO ; Jijun ZHANG ; Ping YUE ; Lei ZHANG ; Kexiang ZHU ; Xiaoliang ZHU ; Hui ZHANG ; Senlin HOU ; Kailin CAI ; Hao SUN ; Ping XUE ; Wei LIU ; Haiping WANG ; Li ZHANG ; Songming DING ; Zhiqing YANG ; Ming ZHANG ; Hao WENG ; Qingyuan WU ; Bendong CHEN ; Tiemin JIANG ; Yingkai WANG ; Lichao ZHANG ; Ke WU ; Xue YANG ; Zilong WEN ; Chun LIU ; Long MIAO ; Zhengfeng WANG ; Jiajia LI ; Xiaowen YAN ; Fangzhao WANG ; Lingen ZHANG ; Mingzhen BAI ; Ningning MI ; Xianzhuo ZHANG ; Wence ZHOU ; Jinqiu YUAN ; Azumi SUZUKI ; Kiyohito TANAKA ; Jiankang LIU ; Ula NUR ; Elisabete WEIDERPASS ; Xun LI
Chinese Medical Journal 2024;137(12):1437-1446
		                        		
		                        			
		                        			Background::Although overnight fasting is recommended prior to endoscopic retrograde cholangiopancreatography (ERCP), the benefits and safety of high-carbohydrate fluid diet (CFD) intake 2 h before ERCP remain unclear. This study aimed to analyze whether high-CFD intake 2 h before ERCP can be safe and accelerate patients’ recovery.Methods::This prospective, multicenter, randomized controlled trial involved 15 tertiary ERCP centers. A total of 1330 patients were randomized into CFD group ( n = 665) and fasting group ( n = 665). The CFD group received 400 mL of maltodextrin orally 2 h before ERCP, while the control group abstained from food/water overnight (>6 h) before ERCP. All ERCP procedures were performed using deep sedation with intravenous propofol. The investigators were blinded but not the patients. The primary outcomes included postoperative fatigue and abdominal pain score, and the secondary outcomes included complications and changes in metabolic indicators. The outcomes were analyzed according to a modified intention-to-treat principle. Results::The post-ERCP fatigue scores were significantly lower at 4 h (4.1 ± 2.6 vs. 4.8 ± 2.8, t = 4.23, P <0.001) and 20 h (2.4 ± 2.1 vs. 3.4 ± 2.4, t= 7.94, P <0.001) in the CFD group, with least-squares mean differences of 0.48 (95% confidence interval [CI]: 0.26–0.71, P <0.001) and 0.76 (95% CI: 0.57–0.95, P <0.001), respectively. The 4-h pain scores (2.1 ± 1.7 vs. 2.2 ± 1.7, t = 2.60, P = 0.009, with a least-squares mean difference of 0.21 [95% CI: 0.05–0.37]) and positive urine ketone levels (7.7% [39/509] vs. 15.4% [82/533], χ2 = 15.13, P <0.001) were lower in the CFD group. The CFD group had significantly less cholangitis (2.1% [13/634] vs. 4.0% [26/658], χ2 = 3.99, P = 0.046) but not pancreatitis (5.5% [35/634] vs. 6.5% [43/658], χ2 = 0.59, P = 0.444). Subgroup analysis revealed that CFD reduced the incidence of complications in patients with native papilla (odds ratio [OR]: 0.61, 95% CI: 0.39–0.95, P = 0.028) in the multivariable models. Conclusion::Ingesting 400 mL of CFD 2 h before ERCP is safe, with a reduction in post-ERCP fatigue, abdominal pain, and cholangitis during recovery.Trail Registration::ClinicalTrials.gov, No. NCT03075280.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail