1.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
Background:
Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making.
Methods:
This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes.
Conclusion
This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations.
2.A Novel Point-of-Care Prediction Model for Steatotic Liver Disease:Expected Role of Mass Screening in the Global Obesity Crisis
Jeayeon PARK ; Goh Eun CHUNG ; Yoosoo CHANG ; So Eun KIM ; Won SOHN ; Seungho RYU ; Yunmi KO ; Youngsu PARK ; Moon Haeng HUR ; Yun Bin LEE ; Eun Ju CHO ; Jeong-Hoon LEE ; Su Jong YU ; Jung-Hwan YOON ; Yoon Jun KIM
Gut and Liver 2025;19(1):126-135
Background/Aims:
The incidence of steatotic liver disease (SLD) is increasing across all age groups as the incidence of obesity increases worldwide. The existing noninvasive prediction models for SLD require laboratory tests or imaging and perform poorly in the early diagnosis of infrequently screened populations such as young adults and individuals with healthcare disparities. We developed a machine learning-based point-of-care prediction model for SLD that is readily available to the broader population with the aim of facilitating early detection and timely intervention and ultimately reducing the burden of SLD.
Methods:
We retrospectively analyzed the clinical data of 28,506 adults who had routine health check-ups in South Korea from January to December 2022. A total of 229,162 individuals were included in the external validation study. Data were analyzed and predictions were made using a logistic regression model with machine learning algorithms.
Results:
A total of 20,094 individuals were categorized into SLD and non-SLD groups on the basis of the presence of fatty liver disease. We developed three prediction models: SLD model 1, which included age and body mass index (BMI); SLD model 2, which included BMI and body fat per muscle mass; and SLD model 3, which included BMI and visceral fat per muscle mass. In the derivation cohort, the area under the receiver operating characteristic curve (AUROC) was 0.817 for model 1, 0.821 for model 2, and 0.820 for model 3. In the internal validation cohort, 86.9% of individuals were correctly classified by the SLD models. The external validation study revealed an AUROC above 0.84 for all the models.
Conclusions
As our three novel SLD prediction models are cost-effective, noninvasive, and accessible, they could serve as validated clinical tools for mass screening of SLD.
3.Influence of Adipose-Derived Stem Cell-Enhanced Acellular Dermal Matrix on Capsule Formation in Rat Models
Hyun Su KANG ; Myeong Jae KANG ; Hyun Ki HONG ; Jeong Yeop RYU ; Joon Seok LEE ; Kang Young CHOI ; Ho Yun CHUNG ; Ho Yong PARK ; Jung Dug YANG
Journal of Wound Management and Research 2025;21(1):1-9
Background:
The use of acellular dermal matrix (ADM) in breast reconstruction can inhibit capsular contracture, increasing the success rate of surgery. Adipose-derived stem cells (ADSCs) can effectively suppress foreign body reaction, which is a major cause of capsular contracture. This study aimed to elucidate the synergistic effects of combining ADSCs with ADM on capsule formation, utilizing a rat model.
Methods:
The study utilized 12 rats, equally divided into two experimental groups. Group A received silicone implants covered with ADM, while Group B was implanted with silicone prostheses wrapped in ADM, pre-seeded with ADSCs. Capsule formation was assessed through visual examination, histological analysis, and reverse transcription-polymerase chain reaction (RT-PCR) at 4 and 8 weeks post-implantation.
Results:
At 4 weeks, the mean capsular thickness was 177.16 μm in Group A and 170.76 μm in Group B; at 8 weeks, it was 196.69 μm in Group A and 176.10 μm in Group B. Statistical analysis showed no significant difference in capsule thickness between the groups (P>0.05). Histological findings indicated that Group A had more inflammatory cells and collagen fibers and reduced angiogenesis. RT-PCR showed that angiogenesis-promoting gene expression in Group B was 14% higher at 4 weeks and 156% higher at 8 weeks compared to Group A.
Conclusion
Although no statistically significant reduction in capsule thickness was observed, ADSC-seeded implants showed histological features associated with reduced inflammation and enhanced angiogenesis, suggesting potential benefits in capsule formation management.
4.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
Background:
Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making.
Methods:
This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes.
Conclusion
This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations.
5.A Novel Point-of-Care Prediction Model for Steatotic Liver Disease:Expected Role of Mass Screening in the Global Obesity Crisis
Jeayeon PARK ; Goh Eun CHUNG ; Yoosoo CHANG ; So Eun KIM ; Won SOHN ; Seungho RYU ; Yunmi KO ; Youngsu PARK ; Moon Haeng HUR ; Yun Bin LEE ; Eun Ju CHO ; Jeong-Hoon LEE ; Su Jong YU ; Jung-Hwan YOON ; Yoon Jun KIM
Gut and Liver 2025;19(1):126-135
Background/Aims:
The incidence of steatotic liver disease (SLD) is increasing across all age groups as the incidence of obesity increases worldwide. The existing noninvasive prediction models for SLD require laboratory tests or imaging and perform poorly in the early diagnosis of infrequently screened populations such as young adults and individuals with healthcare disparities. We developed a machine learning-based point-of-care prediction model for SLD that is readily available to the broader population with the aim of facilitating early detection and timely intervention and ultimately reducing the burden of SLD.
Methods:
We retrospectively analyzed the clinical data of 28,506 adults who had routine health check-ups in South Korea from January to December 2022. A total of 229,162 individuals were included in the external validation study. Data were analyzed and predictions were made using a logistic regression model with machine learning algorithms.
Results:
A total of 20,094 individuals were categorized into SLD and non-SLD groups on the basis of the presence of fatty liver disease. We developed three prediction models: SLD model 1, which included age and body mass index (BMI); SLD model 2, which included BMI and body fat per muscle mass; and SLD model 3, which included BMI and visceral fat per muscle mass. In the derivation cohort, the area under the receiver operating characteristic curve (AUROC) was 0.817 for model 1, 0.821 for model 2, and 0.820 for model 3. In the internal validation cohort, 86.9% of individuals were correctly classified by the SLD models. The external validation study revealed an AUROC above 0.84 for all the models.
Conclusions
As our three novel SLD prediction models are cost-effective, noninvasive, and accessible, they could serve as validated clinical tools for mass screening of SLD.
6.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
Background:
Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making.
Methods:
This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes.
Conclusion
This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations.
7.A Novel Point-of-Care Prediction Model for Steatotic Liver Disease:Expected Role of Mass Screening in the Global Obesity Crisis
Jeayeon PARK ; Goh Eun CHUNG ; Yoosoo CHANG ; So Eun KIM ; Won SOHN ; Seungho RYU ; Yunmi KO ; Youngsu PARK ; Moon Haeng HUR ; Yun Bin LEE ; Eun Ju CHO ; Jeong-Hoon LEE ; Su Jong YU ; Jung-Hwan YOON ; Yoon Jun KIM
Gut and Liver 2025;19(1):126-135
Background/Aims:
The incidence of steatotic liver disease (SLD) is increasing across all age groups as the incidence of obesity increases worldwide. The existing noninvasive prediction models for SLD require laboratory tests or imaging and perform poorly in the early diagnosis of infrequently screened populations such as young adults and individuals with healthcare disparities. We developed a machine learning-based point-of-care prediction model for SLD that is readily available to the broader population with the aim of facilitating early detection and timely intervention and ultimately reducing the burden of SLD.
Methods:
We retrospectively analyzed the clinical data of 28,506 adults who had routine health check-ups in South Korea from January to December 2022. A total of 229,162 individuals were included in the external validation study. Data were analyzed and predictions were made using a logistic regression model with machine learning algorithms.
Results:
A total of 20,094 individuals were categorized into SLD and non-SLD groups on the basis of the presence of fatty liver disease. We developed three prediction models: SLD model 1, which included age and body mass index (BMI); SLD model 2, which included BMI and body fat per muscle mass; and SLD model 3, which included BMI and visceral fat per muscle mass. In the derivation cohort, the area under the receiver operating characteristic curve (AUROC) was 0.817 for model 1, 0.821 for model 2, and 0.820 for model 3. In the internal validation cohort, 86.9% of individuals were correctly classified by the SLD models. The external validation study revealed an AUROC above 0.84 for all the models.
Conclusions
As our three novel SLD prediction models are cost-effective, noninvasive, and accessible, they could serve as validated clinical tools for mass screening of SLD.
8.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
Background:
Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making.
Methods:
This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes.
Conclusion
This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations.
9.A Novel Point-of-Care Prediction Model for Steatotic Liver Disease:Expected Role of Mass Screening in the Global Obesity Crisis
Jeayeon PARK ; Goh Eun CHUNG ; Yoosoo CHANG ; So Eun KIM ; Won SOHN ; Seungho RYU ; Yunmi KO ; Youngsu PARK ; Moon Haeng HUR ; Yun Bin LEE ; Eun Ju CHO ; Jeong-Hoon LEE ; Su Jong YU ; Jung-Hwan YOON ; Yoon Jun KIM
Gut and Liver 2025;19(1):126-135
Background/Aims:
The incidence of steatotic liver disease (SLD) is increasing across all age groups as the incidence of obesity increases worldwide. The existing noninvasive prediction models for SLD require laboratory tests or imaging and perform poorly in the early diagnosis of infrequently screened populations such as young adults and individuals with healthcare disparities. We developed a machine learning-based point-of-care prediction model for SLD that is readily available to the broader population with the aim of facilitating early detection and timely intervention and ultimately reducing the burden of SLD.
Methods:
We retrospectively analyzed the clinical data of 28,506 adults who had routine health check-ups in South Korea from January to December 2022. A total of 229,162 individuals were included in the external validation study. Data were analyzed and predictions were made using a logistic regression model with machine learning algorithms.
Results:
A total of 20,094 individuals were categorized into SLD and non-SLD groups on the basis of the presence of fatty liver disease. We developed three prediction models: SLD model 1, which included age and body mass index (BMI); SLD model 2, which included BMI and body fat per muscle mass; and SLD model 3, which included BMI and visceral fat per muscle mass. In the derivation cohort, the area under the receiver operating characteristic curve (AUROC) was 0.817 for model 1, 0.821 for model 2, and 0.820 for model 3. In the internal validation cohort, 86.9% of individuals were correctly classified by the SLD models. The external validation study revealed an AUROC above 0.84 for all the models.
Conclusions
As our three novel SLD prediction models are cost-effective, noninvasive, and accessible, they could serve as validated clinical tools for mass screening of SLD.
10.Growth and Developmental Outcomes of Triplets Preterm Infants according to the Chorionicity: A Retrospective Cohort Study
Eun Woo NAM ; Jae Hui RYU ; Hye Su HWANG ; Ho Jung CHOI ; Seulgi PARK ; Seung Han SHIN ; Ee-Kyung KIM ; Han-Suk KIM
Perinatology 2024;35(2):61-68
Objective:
We elucidated the effect of monochorionicity on neonatal and long-term neurologic outcomes on an individual basis in triplets.
Methods:
We retrospectively reviewed the perinatal outcomes and development and growth at 18 to 24 months corrected age (CA) of triplets born alive between 24 and 32 weeks of gestational age (GA) between 2009 and 2021 from the Seoul National University Hospital database. Neurodevelopmental impairment (NDI) was defined as any delay among the Bayley-III domains (motor and language), cerebral palsy, hearing impairment, or visual loss and was performed at a CA of 18 to 24 months.
Results:
We included 40 sets of triplets (120 infants), comprising 26, 10, and 4 sets of trichorionic (TC), dichorionic (DC), and monochorionic (MC) triplets, respectively. Ten infants, unaffected by monochorionicity out of 30 DC infants, were included in the non-MC group. Eighty-eight infants were included in the non-MC group, and 32 infants were affected by monochorionicity. In vitro fertilization-embryo transfer was more frequent in the non-MC group (P<0.05), and twin-to-twin transfusion syndrome affected only the MC group (P<0.01). At 24 months of CA, a combined delay of language and cognition in Bayley-III was evident in the MC group (P<0.05). Although NDI did not significantly differ between the 2 groups (P=0.059), the composite outcome of NDI+ postnatal death was significantly different (P<0.05). NDI+ postnatal death correlated with GA, Z-score of birth weight, brain injury, and monochorionicity in the univariate analysis (P<0.05). Multivariate analysis revealed a significant correlation between monochorionicity and NDI+ postnatal death. (P<0.05).
Conclusion
Monochorionicity is associated with adverse long-term neurodevelopmental out comes.

Result Analysis
Print
Save
E-mail