1.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
2.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
3.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
4.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
5.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
6.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
7.Diagnostic Value of Zero Echo Time Magnetic Resonance Imaging for Pediatric Osseous Pathologies
Soojin KIM ; Young Hun CHOI ; Jae Won CHOI ; Yeon Jin CHO ; Seunghyun LEE ; Jae Yeon HWANG ; Jung-Eun CHEON
Investigative Magnetic Resonance Imaging 2024;28(4):184-192
Purpose:
This study aimed to determine whether zero echo time magnetic resonance imaging (ZTE-MRI), as an alternative imaging modality, and conventional computed tomography (CT) have similar diagnostic qualities for assessing pediatric osseous pathologies.
Materials and Methods:
Twenty-six sets of pediatric musculoskeletal CT and MRI scans (15 boys and 11 girls; mean age, 12 ± 4 years; range, 5–23 years) acquired at Seoul National University Children’s Hospital (January 2021 to November 2023) were retrospectively evaluated. CT-like images from ZTE-MRI were generated using grayscale inversion. Two radiologists independently assessed ZTE-MRI image quality (S anat) on a 5-point scale (1 = nondiagnostic, 5 = excellent) and a comparative scale (–2 = CT greater, 0 = same, 2 = ZTE-MRI greater) for lesion delineation (Scomp). The confidence interval of proportions and intraclass correlation coefficient were calculated to assess inter-rater agreement, and Wilcoxon rank-sum test, Mann–Whitney U test, or paired t-test was used to compare image quality or cortical thickness between the modalities.
Results:
ZTE-MRI demonstrated diagnostic quality (S anat ≥ 3) in 85%–96% of the cases, 89%–96% for cortical delineation, 92%–100% for intramedullary cavity (IMC) delineation, and 92% for lesion delineation. Compared with conventional CT, ZTE-MRI showed comparable diagnostic power (Scomp ≥ –1) in 92%–96% of the cases, with Scomp scores indicating no significant difference in lesion delineation (p = 0.53 in reader 1 and p = 0.25 in reader 2). There was a preference for CT over ZTE-MRI in terms of overall image quality and delineation of the cortex and IMC (p < 0.001). Cortical thickness was not significantly different (p = 0.11) between ZTE-MRI and CT.
Conclusion
ZTE-MRI demonstrated diagnostic quality comparable to that of CT, particularly in lesion delineation. In addition to the unique information that conventional MRI can provide, ZTE-MRI can provide additional information about osseous structures similar to that provided by CT, which we believe will be valuable in the future.
8.Cohort profile: Multicenter Networks for Ideal Outcomes of Rare Pediatric Endocrine and Metabolic Diseases in Korea (OUTSPREAD study)
Yun Jeong LEE ; Chong Kun CHEON ; Junghwan SUH ; Jung-Eun MOON ; Moon Bae AHN ; Seong Hwan CHANG ; Jieun LEE ; Jin Ho CHOI ; Minsun KIM ; Han Hyuk LIM ; Jaehyun KIM ; Shin-Hye KIM ; Hae Sang LEE ; Yena LEE ; Eungu KANG ; Se Young KIM ; Yong Hee HONG ; Seung YANG ; Heon-Seok HAN ; Sochung CHUNG ; Won Kyoung CHO ; Eun Young KIM ; Jin Kyung KIM ; Kye Shik SHIM ; Eun-Gyong YOO ; Hae Soon KIM ; Aram YANG ; Sejin KIM ; Hyo-Kyoung NAM ; Sung Yoon CHO ; Young Ah LEE
Annals of Pediatric Endocrinology & Metabolism 2024;29(6):349-355
Rare endocrine diseases are complex conditions that require lifelong specialized care due to their chronic nature and associated long-term complications. In Korea, a lack of nationwide data on clinical practice and outcomes has limited progress in patient care. Therefore, the Multicenter Networks for Ideal Outcomes of Pediatric Rare Endocrine and Metabolic Disease (OUTSPREAD) study was initiated. This study involves 30 centers across Korea. The study aims to improve the long-term prognosis of Korean patients with rare endocrine diseases by collecting comprehensive clinical data, biospecimens, and patient-reported outcomes to identify complications and unmet needs in patient care. Patients with childhood-onset pituitary, adrenal, or gonadal disorders, such as craniopharyngioma, congenital adrenal hyperplasia (CAH), and Turner syndrome were prioritized. The planned enrollment is 1,300 patients during the first study phase (2022–2024). Clinical, biochemical, and imaging data from diagnosis, treatment, and follow-up during 1980–2023 were retrospectively reviewed. For patients who agreed to participate in the prospective cohort, clinical data and biospecimens will be prospectively collected to discover ideal biomarkers that predict the effectiveness of disease control measures and prognosis. Patient-reported outcomes, including quality of life and depression scales, will be evaluated to assess psychosocial outcomes. Additionally, a substudy on CAH patients will develop a steroid hormone profiling method using liquid chromatography-tandem mass spectrometry to improve diagnosis and monitoring of treatment outcomes. This study will address unmet clinical needs by discovering ideal biomarkers, introducing evidence-based treatment guidelines, and ultimately improving long-term outcomes in the areas of rare endocrine and metabolic diseases.
9.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
10.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.

Result Analysis
Print
Save
E-mail