1.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
		                        		
		                        			 Objective:
		                        			This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery. 
		                        		
		                        			Methods:
		                        			This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression. 
		                        		
		                        			Results:
		                        			Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability. 
		                        		
		                        			Conclusion
		                        			Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings. 
		                        		
		                        		
		                        		
		                        	
2.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
		                        		
		                        			 Objective:
		                        			This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery. 
		                        		
		                        			Methods:
		                        			This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression. 
		                        		
		                        			Results:
		                        			Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability. 
		                        		
		                        			Conclusion
		                        			Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings. 
		                        		
		                        		
		                        		
		                        	
3.The Regulatory Role of Glucose Transporter 1 on the Function of Human Umbilical Vein Endothelial Cells Under Ischemia-hypoxic Conditions
Meiling LI ; Siqi GAO ; Zhefu LIU ; Huanyan LIAO ; Fanmao LIU ; Wenhao XIA ; Jun GUO ; Yan LI
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):444-455
		                        		
		                        			
		                        			Abstract: ObjectiveThe study aims to explore the effects and regulatory roles of glucose transporter 1 (GLUT1) on the proliferation, migration, adhesion, and angiogenesis of human umbilical vein endothelial cells (HUVECs) under ischemia-hypoxic conditions. MethodsIn vitro experiments were conducted to subject HUVECs to an ischemia-hypoxic-mimicking environment (1% O2, 5% CO2, 94% N2). The biological characteristics of HUVECs under normoxic and ischemia-hypoxic conditions were compared by assessing cell viability, proliferation capacity, and examining the expression changes of GLUT1, HIF-1α, and VEGFA proteins under ischemia-hypoxia using Western blot technology. Further, GLUT1 was overexpressed using plasmid transfection and the proliferation, migration, adhesion, and angiogenic capabilities of HUVECs were evaluated through scratch assays, cell adhesion assays, and tube formation assays. Mitochondrial morphological changes were observed by transmission electron microscopy,and oxygen consumption rate (OCR) was detected by Seahorse metabolic analyzer to evaluate mitochondrial function. ResultsCompared with normoxic conditions, the ischemia-hypoxic environment significantly inhibited the proliferation, cell viability, migration, and adhesion capabilities of HUVECs and impaired their angiogenic potential. The expression levels of GLUT1, HIF-1α and VEGFA proteins were also markedly reduced. However, when GLUT1 expression was upregulated, the migration, adhesion, and angiogenic capabilities of HUVECs were significantly improved, and the protein expression levels of HIF-1α, VEGFA and VEGFR were increased. Transmission electron microscopy revealed that ischemic-hypoxia leads to mitochondrial swelling and matrix damage, while GLUT1 overexpression significantly alleviates mitochondrial morphology abnormalities. OCR results suggest that GLUT1 overexpression may enhance oxidative phosphorylation of endothelial cells in ischemic-hypoxic environments to improve energy metabolism. These results suggest that GLUT1 may influence the function and angiogenic potential of HUVECs by regulating glucose metabolism and energy supply. ConclusionsThis study reveals the significant regulatory role of GLUT1 in the function of HUVECs under ischemia-hypoxic conditions, potentially through modulating cellular energy metabolism and signal transduction pathways, thereby affecting cell proliferation, migration, adhesion, and angiogenesis. These findings provide a new perspective on the role of GLUT1 in cardiovascular diseases and may offer potential targets for the development of new therapeutic strategies. 
		                        		
		                        		
		                        		
		                        	
4.Frontier research and future prospects: The application of vaccines,gene editing,and big data in autoimmune encephalitis
Journal of Apoplexy and Nervous Diseases 2025;42(6):498-500
		                        		
		                        			
		                        			Autoimmune encephalitis(AE)refers broadly to a group of encephalitic disorders mediated by autoimmune mechanisms. AE is characterized by complex pathogeneses and diverse clinical manifestations,and there are still numerous challenges in the diagnosis and treatment of AE. With the development of frontier technologies such as vaccines,gene editing,and big data,new opportunities have emerged for transforming the diagnosis and treatment strategies for AE. Vaccines play a dual role in AE: on the one hand,they can prevent infections; on the other hand,they may trigger autoimmune responses through molecular mimicry. Emerging nanovaccine technologies are expected to achieve safer and more effective immunomodulation. Gene editing techniques,especially the CRISPR-Cas9 system,have shown potential in targeted regulation of the function of immune cells and repair of nervous tissue,which provides new pathways for precise intervention in the treatment of AE. The application of big data technologies,including artificial intelligence,natural language processing,and deep learning,has promoted the early diagnosis of AE and the development of individualized treatment regimens. This article reviews the research advances and clinical prospects of these cutting-edge technologies in AE,in order to provide insights and references for the development of precision medicine,interdisciplinary collaboration,and future treatment strategies for AE.
		                        		
		                        		
		                        		
		                        	
5.Association between medium to long term ambient PM 2.5 exposure and overweight/obesity among primary and secondary school students
Chinese Journal of School Health 2025;46(7):937-940
		                        		
		                        			Objective:
		                        			To investigate the association between medium  to long term PM 2.5  exposure around school areas and overweight/obesity among primary and secondary school students in Guangxi, providing data support and theoretical foundations for scientifically addressing overweight and obesity in primary and secondary school students.
		                        		
		                        			Methods:
		                        			From September to November 2023, a stratified cluster random sampling method was employed to select 251 183 students aged 7-18 years (grade 1 to grade 12) from 14 prefecture level cities (111 districts and counties) in Guangxi. PM 2.5  mass concentration data were obtained from the Tracking Air Pollution in China (TAP) dataset. Preliminary comparative analysis was conducted using the Mann-Whitney  U  test, while binary Logistic regression models were applied to quantify the relationship between PM 2.5  exposure and overweight/obesity. Restricted cubic spline analysis was further utilized to examine the nonlinear association between PM 2.5  concentration and overweight/obesity risk.
		                        		
		                        			Results:
		                        			The detection rate of overweight/obesity among Guangxi students in 2023 was 19.5%. The median PM 2.5  concentration in the year prior to the study was higher in the overweight/obesity group (23.22 μg/m 3) compared to the non overweight/obesity group (22.63 μg/m 3) ( Z=-15.66, P <0.01), and consistent trends were observed across gender (male/female) and educational stage (primary/junior/senior high school) subgroups (all  P <0.01). Binary Logistic regression revealed that for every 10 μg/m 3 increase in the annual average PM 2.5  concentration, the risk of overweight/obesity increased by 12% ( OR=1.12, 95%CI=1.09- 1.15 , P <0.01). Restricted cubic spline analysis indicated a nonlinear relationship between monthly PM 2.5  levels and overweight/obesity risk ( P trend <0.01). Below 22.68 μg/m 3, PM 2.5  exposure showed no significant association with obesity risk; above the threshold, the risk increased with rising PM 2.5  levels.
		                        		
		                        			Conclusion
		                        			Medium  to long term PM 2.5  exposure around school environments is significantly associated with overweight/obesity among primary and secondary school students.
		                        		
		                        		
		                        		
		                        	
6.Effect of Maxing Loushi Decoction on Inflammatory Factors, Immune Function, and PD-1/PD-L1 Signaling Pathway in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Phlegm Turbidity Obstructing Lung Syndrome
Yuexin SHI ; Zhi YAO ; Jun YAN ; Caijun WU ; Li LI ; Yuanzhen JIAN ; Guangming ZHENG ; Yanchen CAO ; Haifeng GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):143-150
		                        		
		                        			
		                        			ObjectiveTo evaluate the clinical efficacy of Maxing Loushi decoction in the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with phlegm turbidity obstructing lung syndrome, and to investigate its effects on inflammatory factors, immune function, and the programmed death-1(PD-1)/programmed death-ligand 1 (PD-L1) signaling pathway. MethodsA randomized controlled study was conducted, enrolling 90 hospitalized patients with AECOPD and phlegm turbidity obstructing lung syndrome in the Respiratory and Emergency Departments of Dongzhimen Hospital, Beijing University of Chinese Medicine, from April 2024 to December 2024. Patients were randomly assigned to a control group and an observation group using a random number table, with 45 patients in each group. The control group received conventional Western medical treatment, while the observation group received additional Maxing Loushi decoction for 14 days. Clinical efficacy, COPD Assessment Test (CAT) score, modified Medical Research Council Dyspnea Scale (mMRC), 6-minute walk test (6MWT), serum inflammatory factors, T lymphocyte subsets, and serum PD-1/PD-L1 levels were compared between the two groups before and after treatment. ResultsThe total clinical effective rate was 78.57% (33/42) in the control group and 95.35% (41/43) in the observation group, with the observation group showing significantly higher efficacy than that of the control group. The difference was statistically significant (χ2 = 5.136, P<0.05). After treatment, both groups showed significant reductions in CAT and mMRC scores (P<0.05, P<0.01) and significant increases in 6MWT compared to baseline (P<0.01). The observation group demonstrated significantly greater improvements than the control group in this regard. Levels of inflammatory markers including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1(MCP-1), and macrophage inflammatory protein-1α (MIP-1α) were significantly reduced in both groups (P<0.05, P<0.01), with greater reductions in the observation group (P<0.05, P<0.01). CD8+ levels were significantly reduced (P<0.01), while CD3+, CD4+, and CD4+/CD8+ levels were significantly increased in both groups after treatment (P<0.05, P<0.01), with more significant improvements observed in the observation group (P<0.05, P<0.01). Serum PD-1 levels were reduced (P<0.05, P<0.01), and PD-L1 levels were increased significantly in both groups after treatment (P<0.05, P<0.01), with more pronounced changes in the observation group (P<0.05). ConclusionMaxing Loushi decoction demonstrates definite therapeutic efficacy as an adjunctive treatment for patients with AECOPD and phlegm turbidity obstructing lung syndrome. It contributes to reducing serum inflammatory factors, improving immune function, and regulating the PD-1/PD-L1 signaling pathway. 
		                        		
		                        		
		                        		
		                        	
7.Analysis of Quality Difference Factors of Perillae Caulis Based on Chemometrics Combined with TOPSIS Model
Maoqing WANG ; Sha CHEN ; Qian MA ; Jun ZHANG ; Qingxia XU ; Cong GUO ; Rui SHEN ; Yan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):168-175
		                        		
		                        			
		                        			ObjectiveTo explore quality difference factors of Perillae Caulis based on the contents of multiple chemical components and comprehensively evaluate the quality. MethodsA total of 32 batches of Perillae Caulis samples were collected from 12 producing areas such as Hebei, Anhui and Guangdong, and their diameter range, epidermis color and producing areas were recorded. Total flavonoids, total phenols, volatile oils, 5 active components and 84 volatile components in 32 batches of samples were quantitatively or semi-quantitatively determined by colorimetry, ultra performance liquid chromatography-photodiode array detector(UPLC-PDA) and gas chromatography-mass spectrometry(GC-MS). Then the differences between the contents of these components were analyzed by principal component analysis(PCA) and non-parametric test. According to the weights of the index components determined by PCA model, entropy weight-technique for order preference by similarity to ideal solution(TOPSIS) model was constructed to evaluate the quality of Perillae Caulis with different characters and origins. ResultsThere were significant differences in the composition of Perillae Caulis with different diameters, epidermis colors and producing areas, and 9 differential components were screened out, including 6 index constituents(total flavonoids, total phenols, caffeic acid, scutellarin, rosmarinic acid and luteolin) and 3 volatile components(caryophyllene oxide, (-)-humulene epoxide Ⅱ, 14-hydroxycaryophyllene), of which 6 index constituents were higher in samples with small diameter, purple-brown epidermis and southern origin, while the contents of 3 volatile components were higher in samples with large diameter, dark-brown epidermis and northern origin. A significant difference was shown in the model scores of different diameters, epidermis colors and origins(P<0.05), and the scores of Perillae Caulis with small diameter and purple-brown epidermis from southern area, especially Guangdong, had a high score. ConclusionThere are significant differences in the composition and content of chemical constituents between different diameters, epidermal colors and production areas of Perillae Caulis, samples showing small diameter, owing purple-brown epidermis, and originating from Guangdong were of higher-quality due to their higher content of 8 key indices. 
		                        		
		                        		
		                        		
		                        	
8.Effect of Maxing Loushi Decoction on Inflammatory Factors, Immune Function, and PD-1/PD-L1 Signaling Pathway in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Phlegm Turbidity Obstructing Lung Syndrome
Yuexin SHI ; Zhi YAO ; Jun YAN ; Caijun WU ; Li LI ; Yuanzhen JIAN ; Guangming ZHENG ; Yanchen CAO ; Haifeng GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):143-150
		                        		
		                        			
		                        			ObjectiveTo evaluate the clinical efficacy of Maxing Loushi decoction in the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with phlegm turbidity obstructing lung syndrome, and to investigate its effects on inflammatory factors, immune function, and the programmed death-1(PD-1)/programmed death-ligand 1 (PD-L1) signaling pathway. MethodsA randomized controlled study was conducted, enrolling 90 hospitalized patients with AECOPD and phlegm turbidity obstructing lung syndrome in the Respiratory and Emergency Departments of Dongzhimen Hospital, Beijing University of Chinese Medicine, from April 2024 to December 2024. Patients were randomly assigned to a control group and an observation group using a random number table, with 45 patients in each group. The control group received conventional Western medical treatment, while the observation group received additional Maxing Loushi decoction for 14 days. Clinical efficacy, COPD Assessment Test (CAT) score, modified Medical Research Council Dyspnea Scale (mMRC), 6-minute walk test (6MWT), serum inflammatory factors, T lymphocyte subsets, and serum PD-1/PD-L1 levels were compared between the two groups before and after treatment. ResultsThe total clinical effective rate was 78.57% (33/42) in the control group and 95.35% (41/43) in the observation group, with the observation group showing significantly higher efficacy than that of the control group. The difference was statistically significant (χ2 = 5.136, P<0.05). After treatment, both groups showed significant reductions in CAT and mMRC scores (P<0.05, P<0.01) and significant increases in 6MWT compared to baseline (P<0.01). The observation group demonstrated significantly greater improvements than the control group in this regard. Levels of inflammatory markers including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1(MCP-1), and macrophage inflammatory protein-1α (MIP-1α) were significantly reduced in both groups (P<0.05, P<0.01), with greater reductions in the observation group (P<0.05, P<0.01). CD8+ levels were significantly reduced (P<0.01), while CD3+, CD4+, and CD4+/CD8+ levels were significantly increased in both groups after treatment (P<0.05, P<0.01), with more significant improvements observed in the observation group (P<0.05, P<0.01). Serum PD-1 levels were reduced (P<0.05, P<0.01), and PD-L1 levels were increased significantly in both groups after treatment (P<0.05, P<0.01), with more pronounced changes in the observation group (P<0.05). ConclusionMaxing Loushi decoction demonstrates definite therapeutic efficacy as an adjunctive treatment for patients with AECOPD and phlegm turbidity obstructing lung syndrome. It contributes to reducing serum inflammatory factors, improving immune function, and regulating the PD-1/PD-L1 signaling pathway. 
		                        		
		                        		
		                        		
		                        	
9.Analysis of Quality Difference Factors of Perillae Caulis Based on Chemometrics Combined with TOPSIS Model
Maoqing WANG ; Sha CHEN ; Qian MA ; Jun ZHANG ; Qingxia XU ; Cong GUO ; Rui SHEN ; Yan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):168-175
		                        		
		                        			
		                        			ObjectiveTo explore quality difference factors of Perillae Caulis based on the contents of multiple chemical components and comprehensively evaluate the quality. MethodsA total of 32 batches of Perillae Caulis samples were collected from 12 producing areas such as Hebei, Anhui and Guangdong, and their diameter range, epidermis color and producing areas were recorded. Total flavonoids, total phenols, volatile oils, 5 active components and 84 volatile components in 32 batches of samples were quantitatively or semi-quantitatively determined by colorimetry, ultra performance liquid chromatography-photodiode array detector(UPLC-PDA) and gas chromatography-mass spectrometry(GC-MS). Then the differences between the contents of these components were analyzed by principal component analysis(PCA) and non-parametric test. According to the weights of the index components determined by PCA model, entropy weight-technique for order preference by similarity to ideal solution(TOPSIS) model was constructed to evaluate the quality of Perillae Caulis with different characters and origins. ResultsThere were significant differences in the composition of Perillae Caulis with different diameters, epidermis colors and producing areas, and 9 differential components were screened out, including 6 index constituents(total flavonoids, total phenols, caffeic acid, scutellarin, rosmarinic acid and luteolin) and 3 volatile components(caryophyllene oxide, (-)-humulene epoxide Ⅱ, 14-hydroxycaryophyllene), of which 6 index constituents were higher in samples with small diameter, purple-brown epidermis and southern origin, while the contents of 3 volatile components were higher in samples with large diameter, dark-brown epidermis and northern origin. A significant difference was shown in the model scores of different diameters, epidermis colors and origins(P<0.05), and the scores of Perillae Caulis with small diameter and purple-brown epidermis from southern area, especially Guangdong, had a high score. ConclusionThere are significant differences in the composition and content of chemical constituents between different diameters, epidermal colors and production areas of Perillae Caulis, samples showing small diameter, owing purple-brown epidermis, and originating from Guangdong were of higher-quality due to their higher content of 8 key indices. 
		                        		
		                        		
		                        		
		                        	
10.Prediction of lymph node metastasis in invasive lung adenocarcinoma based on radiomics of the primary lesion, peritumoral region, and tumor habitat: A single-center retrospective study
Hongchang WANG ; Yan GU ; Wenhao ZHANG ; Guang MU ; Wentao XUE ; Mengen WANG ; Chenghao FU ; Liang CHEN ; Mei YUAN ; Jun WANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1079-1085
		                        		
		                        			
		                        			Objective  To predict the lymph node metastasis status of patients with invasive pulmonary adenocarcinoma by constructing machine learning models based on primary tumor radiomics, peritumoral radiomics, and habitat radiomics, and to evaluate the predictive performance and generalization ability of different imaging features. Methods  A retrospective analysis was performed on the clinical data of 1 263 patients with invasive pulmonary adenocarcinoma who underwent surgery at the Department of Thoracic Surgery, Jiangsu Province Hospital, from 2016 to 2019. Habitat regions were delineated by applying K-means clustering (average cluster number of 2) to the grayscale values of CT images. The peritumoral region was defined as a uniformly expanded area of 3 mm around the primary tumor. The primary tumor region was automatically segmented using V-net combined with manual correction and annotation. Subsequently, radiomics features were extracted based on these regions, and stacked machine learning models were constructed. Model performance was evaluated on the training, testing, and internal validation sets using the area under the receiver operating characteristic curve (AUC), F1 score, recall, and precision. Results  After excluding patients who did not meet the screening criteria, a total of 651 patients were included. The training set consisted of 468 patients (181 males, 287 females) with an average age of (58.39±11.23) years, ranging from 29 to 78 years, the testing set included 140 patients (56 males, 84 females) with an average age of (58.81±10.70) years, ranging from 34 to 82 years, and the internal validation set comprised 43 patients (14 males, 29 females) with an average age of (60.16±10.68) years, ranging from 29 to 78 years. Although the habitat radiomics model did not show the optimal performance in the training set, it exhibited superior performance in the internal validation set, with an AUC of 0.952 [95%CI (0.87, 1.00)], an F1 score of 84.62%, and a precision-recall AUC of 0.892, outperforming the models based on the primary tumor and peritumoral regions. Conclusion The model constructed based on habitat radiomics demonstrated superior performance in the internal validation set, suggesting its potential for better generalization ability and clinical application in predicting lymph node metastasis status in pulmonary adenocarcinoma.
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail