1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.Discovery and investigation of six polio vaccine derived viruses in Guangzhou City
Min CUI ; Chunhuan ZHANG ; Wei ZHANG ; Jun LIU ; Jialing LI ; Jianxiong XU ; Wenji WANG ; Qing HE ; Lihong NI ; Xuexia YUN ; Huanying ZHENG
Journal of Public Health and Preventive Medicine 2025;36(2):22-25
Objective To understand the surveillance situation of poliovirus in Guangzhou from 2011 to 2024, and to further strengthen polio surveillance and ensure the continued maintenance of a polio-free status. Methods An analysis was conducted on the discovery and investigation results of six cases of vaccine-derived poliovirus (VDPV) detected in Guangzhou. Results A total of 6 VDPV incidents were reported in Guangzhou from 2011 to June 2024, among which 5 incidents were from sewage sample testing in the Liede Sewage Treatment Plant in Guangzhou, all of which were confirmed as VDPV, with 1 for type I, 1 for type II, and 3 for type III. In addition, one confirmed HFMD case was identified as a type VDPV II carrier. No presence of any wild poliovirus (WPV), VDPV cases, or circulating VDPV (cVDPV) was reported. Conclusion Guangzhou City has maintained a high level of vigilance and effectiveness in the monitoring and prevention of polio. Continuously strengthening the construction of the polio monitoring network, optimizing vaccination strategies, and comprehensively improving public health awareness are still the focus of the prevention and control work in the future.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Stability study of umbilical cord mesenchymal stem cells formulation in large-scale production
Wang-long CHU ; Tong-jing LI ; Yan SHANGGUAN ; Fang-tao HE ; Jian-fu WU ; Xiu-ping ZENG ; Tao GUO ; Qing-fang WANG ; Fen ZHANG ; Zhen-zhong ZHONG ; Xiao LIANG ; Jun-yuan HU ; Mu-yun LIU
Acta Pharmaceutica Sinica 2024;59(3):743-750
Umbilical cord mesenchymal stem cells (UC-MSCs) have been widely used in regenerative medicine, but there is limited research on the stability of UC-MSCs formulation during production. This study aims to assess the stability of the cell stock solution and intermediate product throughout the production process, as well as the final product following reconstitution, in order to offer guidance for the manufacturing process and serve as a reference for formulation reconstitution methods. Three batches of cell formulation were produced and stored under low temperature (2-8 ℃) and room temperature (20-26 ℃) during cell stock solution and intermediate product stages. The storage time intervals for cell stock solution were 0, 2, 4, and 6 h, while for intermediate products, the intervals were 0, 1, 2, and 3 h. The evaluation items included visual inspection, viable cell concentration, cell viability, cell surface markers, lymphocyte proliferation inhibition rate, and sterility. Additionally, dilution and culture stability studies were performed after reconstitution of the cell product. The reconstitution diluents included 0.9% sodium chloride injection, 0.9% sodium chloride injection + 1% human serum albumin, and 0.9% sodium chloride injection + 2% human serum albumin, with dilution ratios of 10-fold and 40-fold. The storage time intervals after dilution were 0, 1, 2, 3, and 4 h. The reconstitution culture media included DMEM medium, DMEM + 2% platelet lysate, 0.9% sodium chloride injection, and 0.9% sodium chloride injection + 1% human serum albumin, and the culture duration was 24 h. The evaluation items were viable cell concentration and cell viability. The results showed that the cell stock solution remained stable for up to 6 h under both low temperature (2-8 ℃) and room temperature (20-26 ℃) conditions, while the intermediate product remained stable for up to 3 h under the same conditions. After formulation reconstitution, using sodium chloride injection diluted with 1% or 2% human serum albumin maintained a viability of over 80% within 4 h. It was observed that different dilution factors had an impact on cell viability. After formulation reconstitution, cultivation in medium with 2% platelet lysate resulted in a cell viability of over 80% after 24 h. In conclusion, the stability of cell stock solution within 6 h and intermediate product within 3 h meets the requirements. The addition of 1% or 2% human serum albumin in the reconstitution diluent can better protect the post-reconstitution cell viability.
7.miR-375 Attenuates The Migration and Invasion of Osteosarcoma Cells by Targeting MMP13
Zhong LIU ; Lei HE ; Jian XIAO ; Qing-Mei ZHU ; Jun XIAO ; Yong-Ming YANG ; Yong-Jian LUO ; Zhong-Cheng MO ; Yi-Qun ZHANG ; Ming LI
Progress in Biochemistry and Biophysics 2024;51(5):1203-1214
ObjectiveTo explore whether miR-375 regulates the malignant characteristics of osteosarcoma (OS) by influencing the expression of MMP13. MethodsPlasmid DNAs and miRNAs were transfected into OS cells and HEK293 cells using Lipofectamine 3000 reagent. Real-time quantitative polymerase chain reaction was performed to measure the expression of miR-375 and MMP13 in OS patients and OS cells. Western blot was performed to analyze the MMP13 protein in the patients with OS and OS cells. The targeting relationship between miR-375 and MMP13 was analyzed by luciferase assay. Migration and invasion were analysed by heal wound and transwell assays, respectively. ResultsmiR-375 expression in OS tissues was lower than that in normal tissues. The expression of MMP13 was upregulated in OS tissues. MMP13 expression was negatively correlated withmiR-375 expression in patients with OS. Migration and invasion were significantly inhibited in OS cells with the miR-375 mimic compared with OS cells with the miRNA control. MMP13 partially reversed the inhibition of migration and invasion induced by miR-375 in the OS cells. ConclusionmiR-375 attenuates migration and invasion by downregulating the expression of MMP13 in OS cells.
8.Expert consensus on cryoablation therapy of oral mucosal melanoma
Guoxin REN ; Moyi SUN ; Zhangui TANG ; Longjiang LI ; Jian MENG ; Zhijun SUN ; Shaoyan LIU ; Yue HE ; Wei SHANG ; Gang LI ; Jie ZHNAG ; Heming WU ; Yi LI ; Shaohui HUANG ; Shizhou ZHANG ; Zhongcheng GONG ; Jun WANG ; Anxun WANG ; Zhiyong LI ; Zhiquan HUNAG ; Tong SU ; Jichen LI ; Kai YANG ; Weizhong LI ; Weihong XIE ; Qing XI ; Ke ZHAO ; Yunze XUAN ; Li HUANG ; Chuanzheng SUN ; Bing HAN ; Yanping CHEN ; Wenge CHEN ; Yunteng WU ; Dongliang WEI ; Wei GUO
Journal of Practical Stomatology 2024;40(2):149-155
Cryoablation therapy with explicit anti-tumor mechanisms and histopathological manifestations has a long history.A large number of clinical practice has shown that cryoablation therapy is safe and effective,making it an ideal tumor treatment method in theory.Previously,its efficacy and clinical application were constrained by the limitations of refrigerants and refrigeration equipment.With the development of the new generation of cryoablation equipment represented by argon helium knives,significant progress has been made in refrigeration efficien-cy,ablation range,and precise temperature measurement,greatly promoting the progression of tumor cryoablation technology.This consensus systematically summarizes the mechanism of cryoablation technology,indications for oral mucosal melanoma(OMM)cryotherapy,clinical treatment process,adverse reactions and management,cryotherapy combination therapy,etc.,aiming to provide reference for carrying out the standardized cryoablation therapy of OMM.
9.Effects of Ophiopogonis Root Decoction on a mouse model of idiopathic pulmonary fibrosis based on PD-1/PD-L1 signaling pathway
Meng-Zhen XU ; Chuan-Guo LIU ; Li-Li GONG ; Hai-Hong CHEN ; Dong WANG ; Qing-Jun ZHU
Chinese Traditional Patent Medicine 2024;46(2):437-443
AIM To investigate the effects of Ophiopogonis Root Decoction on bleomycin(BLM)-induced idiopathic pulmonary fibrosis(IPF)in mice and to explore its metabolic modulation of immunity.METHODS The IPF mouse model was constructed by tracheal drip injection of BLM,and the mice were randomly divided into the control group,the model group,the pirfenidone group(0.3 g/kg)and the high,medium and low dose groups of Ophiopogonis Root Decoction(18,9,4.5 g/kg).HE and Masson staining,ELISA,flow cytometry and immunohistochemistry were used to detect the histopathological changes of the lung,the levels of Collagen I,HYP and TGF-β1,the proportion of PD-1+ CD4+T cells in plasma,and the expressions of p-STAT3,PD-1,PD-L1 and IL-17A in lung tissue,respectively.RESULTS Compared with the control group,the model group displayed significantly higher level of lung coefficients(P<0.01),more severe pulmonary inflammatory cell infiltration and collagen fiber deposition,and increased pulmonary fibrosis score(P<0.01),increased levels of Collagen I,HYP and TGF-β1(P<0.01),increased proportion of PD-1+ CD4+ T cells in plasma(P<0.01),increased pulmonary expression of p-STAT3,PD-1,PD-L1 and IL-17A(P<0.01).Compared with the model group,the Ophiopogonis Root Decoction groups shared lower levels of lung coefficients(P<0.05),less pulmonary inflammatory cell infiltration and collagen fiber deposition,decreased pulmonary fibrosis score(P<0.05),decreased levels of Collagen I,HYP and TGF-β1(P<0.05),decreased proportion of PD-1+ CD4+T cells in plasma(P<0.05),and decreased pulmonary expression of p-STAT3,PD-1,PD-L1,and IL-17A(P<0.05).CONCLUSION Ophiopogonis Root Decoction can significantly reduce extracellular matrix(ECM)deposition and curb the progression of IPF via inhibition of STAT3/PD-1/PD-L1 immunomodulatory signaling pathway.
10.Correlation between expressions of serum COL1A1/2 and intracranial aneurysm rupture
Jun-Fei SHI ; Bin FENG ; Jiang LI ; Shao-Peng LIU ; Chao LYU ; Gui-Qing WANG
Journal of Regional Anatomy and Operative Surgery 2024;33(1):51-54
Objective To detect the levels of serum collagen type Ⅰ alpha 1 chain(COL1A1)and collagen type Ⅰ alpha 2 chain(COL1A2)in patients with intracranial aneurysm(IA),and explore their correlations with aneurysm rupture.Methods A total of 110 IA patients admitted to our hospital were regarded as the IA group and another 100 volunteers who underwent physical examination in our hospital were regarded as the control group.The expression levels of serum COL1A1 and COL1A2 were detected by ELISA.The IA patients were divided into the ruptured group(n=66)and unruptured group(n=44)according to the presence or absence of aneurysm rupture,and the clinical data and expression levels of serum COL1A1 and COL1A2 were compared between the two groups.The expression levels of serum COL1A1 and COL1A2 in patients with different Hunt-Hess grades were compared.The risk factors of aneurysm rupture in patients with IA were analyzed by multivariate Logistic regression analysis.The predictive value of serum COL1A1 and COL1A2 for aneurysm rupture in patients with IA were evaluated by receiver operating characteristic(ROC)curve.The correlation of serum COL1A1 and COL1A2 with Hunt-Hess grade for patients in rupture group was analyzed by Spearman correlation analysis.Results The expression levels of serum COL1A1 and COL1A2 for patients in the IA group were significantly higher than those in the control group(P<0.05).The number of patients with hypertension,diabetes mellitus,hyperlipidemia,aneurysm diameter>10 mm,and the expression levels of serum COL1A1 and COL1A2 in the rupture group were significantly more/higher than those in the unruptured group(P<0.05).The expression levels of serum COL1A1 and COL1A2 in patients with Hunt-Hess grades from Ⅲ to Ⅳ were significantly higher than those in patients with grades from Ⅰ to Ⅱ(P<0.05).The expression levels of serum COL1A1 and COL1A2 for patients in the rupture group were positively correlated with Hunt-Hess grade(r=0.562,0.414,P<0.05).Multivariate Logistic regression analysis showed that hypertension,diabetes mellitus,aneurysm diameter>10 mm,and increased expression levels of COL1A1 and COL1A2 were risk factors for aneurysm rupture in IA patients(P<0.05).The area under the curve(AUC)of aneurysm rupture predicted by serum COL1A1 and COL1A2 together was significantly higher than that predicted by COL1A1 alone(Z=1.905,P=0.028)and COL1A2 alone(Z=1.754,P=0.040).Conclusion The increased expression levels of serum COL1A1 and COL1A2 are risk factors for aneurysm rupture in patients with IA,and their combined prediction of aneurysm rupture in IA patients has certain clinical value.


Result Analysis
Print
Save
E-mail