1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Protective effect and mechanism of Icariin on oxidative stress injury in neurons
Yu-Meng DU ; Si-Min YANG ; Xiao-Tong QIN ; Yan LI ; Rui-Jun JU ; Xiao-Ming PENG ; Xiao-Qiang YAN ; Jie GUAN ; Ling-Yue MA
The Chinese Journal of Clinical Pharmacology 2024;40(13):1869-1873
Objective To explore the protective mechanism of icariin on neuronal oxidative damage,providing a basic pharmacological basis for the treatment of cognitive impairment.Methods Glutamate was used to induce oxidative stress injury in HT22 cells.HT22 cells were divided into control group(normal cultured cells),model group(glutamate injury model)and experimental-L,-M,-H groups(5,10 and 20 μmol·L-1 icariin pretreatment for modeling,respectively).Cell proliferation was detected by cell counting kit-8(CCK-8)method;cytotoxicity was detected by lactate dehydrogenase(LDH)method;reactive oxygen species(ROS)levels were detected by flow cytometry;superoxide dismutase(SOD)levels were detected by biochemical kits;the expression levels of Kelch-like epichlorohydrin-related protein-1(Keap1),nuclear factor E2-related factor 2(Nrf2)were detected by Western blotting;the corresponding mRNA expression was detected by real-time fluorescence quantification polymerose chain reaction.Results The cell viability of control group,model group and experimental-L,-M,-H groups were(100.00±1.31)%,(66.38±2.44)%,(72.07±4.95)%,(82.41±3.57)%and(87.97±4.98)%;LDH release were(0.48±0.52)%,(18.82±2.09)%,(15.32±1.17)%,(10.37±1.39)%and(6.51±0.87)%;ROS level were(14.23±1.13)%,(41.74±1.60)%,(35.69±1.08)%,(33.28±1.69)%and(30.32±2.03)%;SOD levels were(54.84±1.17),(37.95±1.13),(48.02±1.28),(50.56±1.34)and(52.55±1.04)U·mg-1;Keap1 protein levels were 0.36±0.01,0.52±0.03,0.46±0.04,0.39±0.09 and 0.35±0.12;Nrf2 protein levels were 0.29±0.02,0.13±0.08,0.18±0.03,0.21±0.11 and 0.26±0.04;catalase(CAT)mRNA levels were 1.01±0.08,0.81±0.06,0.90±0.04,1.05±0.15 and 1.33±0.26;SOD mRNA levels were 1.09±0.12,0.83±0.03,0.86±0.08,0.94±0.08 and 1.09±0.16.Among the above indicators,the differences between the model group and the control group were statistically significant(all P<0.01);the differences between the experimental-M,-H groups and the model group were statistically significant(P<0.01,P<0.05).Conclusion Icariin may activate the Keap1/Nrf2/antioxidant response element(ARE)signaling pathway,regulate the expression of related proteins,and reduce the level of ROS to effectively alleviate oxidative stress injury in neuronal cells.
5.Species-level Microbiota of Biting Midges and Ticks from Poyang Lake
Jian GONG ; Fei Fei WANG ; Qing Yang LIU ; Ji PU ; Zhi Ling DONG ; Hui Si ZHANG ; Zhou Zhen HUANG ; Yuan Yu HUANG ; Ben Ya LI ; Xin Cai YANG ; Meihui Yuan TAO ; Jun Li ZHAO ; Dong JIN ; Yun Li LIU ; Jing YANG ; Shan LU
Biomedical and Environmental Sciences 2024;37(3):266-277,中插1-中插3
Objective The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area,namely,Qunlu Practice Base,Peach Blossom Garden,and Huangtong Animal Husbandry,and whether vectors carry any bacterial pathogens that may cause diseases to humans,to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit(OPU)analysis,we characterized the species-level microbial community structure of two important vector species,biting midges and ticks,including 33 arthropod samples comprising 3,885 individuals,collected around Poyang Lake. Results A total of 662 OPUs were classified in biting midges,including 195 known species and 373 potentially new species,and 618 OPUs were classified in ticks,including 217 known species and 326 potentially new species.Surprisingly,OPUs with potentially pathogenicity were detected in both arthropod vectors,with 66 known species of biting midges reported to carry potential pathogens,including Asaia lannensis and Rickettsia bellii,compared to 50 in ticks,such as Acinetobacter lwoffii and Staphylococcus sciuri.We found that Proteobacteria was the most dominant group in both midges and ticks.Furthermore,the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria.Pantoea sp7 was predominant in biting midges,while Coxiella sp1 was enriched in ticks.Meanwhile,Coxiella spp.,which may be essential for the survival of Haemaphysalis longicornis Neumann,were detected in all tick samples.The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion Biting midges and ticks carry large numbers of known and potentially novel bacteria,and carry a wide range of potentially pathogenic bacteria,which may pose a risk of infection to humans and animals.The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.
6.Simulated Microgravity can Promote the Apoptosis and Change Inflammatory State of Kupffer Cells
Ge JUN ; Liu FEI ; Nie HONGYUN ; Yue YUAN ; Liu KAIGE ; Lin HAIGUAN ; Li HAO ; Zhang TAO ; Yan HONGFENG ; Xu BINGXIN ; Sun HONGWEI ; Yang JIANWU ; Si SHAOYAN ; Zhou JINLIAN ; Cui YAN
Biomedical and Environmental Sciences 2024;37(10):1117-1127
Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells. Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells. Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells. Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis.
7.An observational and Mendelian randomization study of the associations of body mass index with plasma amino acids and acylcarnitines in Chinese adults
Si CHENG ; Ting WU ; Canqing YU ; Dianjianyi SUN ; Pei PEI ; Huaidong DU ; Junshi CHEN ; Zhengming CHEN ; Yuanjie PANG ; Jun LYU ; Liming LI
Chinese Journal of Epidemiology 2024;45(6):770-778
Objective:To explore the relationship between BMI and levels of plasma amino acids and acylcarnitines in Chinese adults.Methods:Based on 2 182 individuals with targeted mass spectrometry metabolomic measurements from the first resurvey of the China Kadoorie Biobank, we assessed the linear and nonlinear associations between BMI and plasma levels of 20 amino acids and 40 acylcarnitines using linear regression models and restricted cubic spline models, and identified BMI-related metabolic pathways. We conducted one-sample Mendelian randomization (MR) with BMI genetic risk scores as the instrumental variable further to explore the potential causal relationships between BMI and 20 amino acids and 40 acylcarnitines, and tested for horizontal pleiotropy using the MR-Egger method.Results:Observational analyses found that BMI was associated with increased plasma levels of 3 branched-chain amino acids (isoleucine, leucine, and valine), 2 aromatic amino acids (phenylalanine and tyrosine), 3 other amino acids (cysteine, glutamate, lysine), and 7 acylcarnitines (C3, C4, C5, C10, C10:1, C14, and C16), and with decreased circulating levels of asparagine, serine, and glycine. Pathway analysis identified 7 BMI-related amino acids metabolic pathways (false discovery rate corrected all P<0.05), including branched-chain amino acids and aromatic amino acids biosynthesis, glutathione metabolism, etc. BMI showed a nonlinear relationship with leucine, valine, and threonine, and a linear relationship with other amino acids and acylcarnitines. One-sample MR analyses revealed that BMI was associated with elevated levels of tyrosine and 4 acylcarnitines [C5-DC(C6-OH), C5-M-DC, C12-DC, and C14], with tyrosine and acylcarnitine C14 positively correlated with BMI in both observational [the β values (95% CIs) were 0.057 (0.044-0.070) and 0.018 (0.005-0.032), respectively] and One-sample MR analyses [the β values (95% CIs) were 0.102 (0.035-0.169) and 0.104 (0.036-0.173), respectively]. The MR analyses of the current study satisfied the 3 core assumptions of instrumental variable. Conclusions:BMI was associated with circulating 11 amino acids and 7 acylcarnitines in Chinese adults, involving several pathways such as branched-chain amino acid and aromatic amino acid metabolism, fatty acid metabolism, and oxidative stress. There may be a causal relationship between BMI and tyrosine and acylcarnitine C14.
8.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.
9.Cloning and interacted protein identification of AP1 homologous gene from Lonicera macranthoides
Ya-xin YU ; Li-jun LONG ; Chang-zhu LI ; Hui-jie ZENG ; Zhong-quan QIAO ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(10):2880-2888
The
10.Preparation and in vitro-in vivo evaluation of suvorexant orodispersible films
Peng ZHAO ; Cong-hui LI ; Si-yi SHUAI ; Bing YANG ; Hui ZHANG ; Nan LIU ; Ai-ping ZHENG ; Yong-jun WANG ; Zeng-ming WANG
Acta Pharmaceutica Sinica 2024;59(9):2659-2664
Orodispersible films (oral dispersible films), a novel form of oral solid dosage forms, are widely used for patients with dysphagia and those with uncontrollable autonomic behavior. In this study, suvorexant orodispersible film was prepared by hot melt extrusion technology, and the disintegration time, mechanical properties,

Result Analysis
Print
Save
E-mail