1.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
3.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
6.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
9.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
10.Visual and Auditory Sensory Impairments Differentially Relate with Alzheimer’s Pathology
Gihwan BYEON ; Min Soo BYUN ; Dahyun YI ; Joon Hyung JUNG ; Nayeong KONG ; Yoonyoung CHANG ; MUSUNG KEUM ; Gijung JUNG ; Hyejin AHN ; Jun-Young LEE ; Yu Kyeong KIM ; Koung Mi KANG ; Chul-Ho SOHN ; Dong Young LEE ;
Clinical Psychopharmacology and Neuroscience 2024;22(4):610-623
Objective:
We intended to investigate the relationships between visual sensory impairment (VSI) or auditory sensory impairment (ASI) and brain pathological changes associated with cognitive decline in older adults.
Methods:
We primarily tried to examine whether each sensory impairment is related to Alzheimer’s disease (AD) pathology, specifically beta-amyloid (Aβ) deposition, through both cross-sectional and longitudinal approaches in cognitively unimpaired older adults. Self-report questionnaires on vision and hearing status were administered at the baseline.Neuroimaging scans including brain [ 11 C] Pittsburgh Compound B PET and MRI, as well as clinical assessments, were performed at baseline and 2-year follow-up.
Results:
Cross-sectional analyses showed that the VSI-positive group had significantly higher Aβ deposition than the VSI-negative group, whereas there was no significant association between ASI positivity and Aβ deposition. Longitudinal analyses revealed that VSI positivity at baseline was significantly associated with increased Aβ deposition over 2 years (β = 0.153, p = 0.025), although ASI positivity was not (β = 0.045, p = 0.518). VSI positivity at baseline was also significantly associated with greater atrophic changes in AD-related brain regions over the 2-year follow-up period (β = −0.207, p = 0.005), whereas ASI positivity was not (β = 0.024, p = 0.753). Neither VSI nor ASI positivity was related to cerebrovascular injury, as measured based on the white matter hyperintensity volume.
Conclusion
The findings suggest that VSI is probably related to AD-specific pathological changes, which possibly mediate the reported relationship between VSI and cognitive decline. In contrast, ASI appears not associated with AD pathologies but may contribute to cognitive decline via other mechanisms.

Result Analysis
Print
Save
E-mail