1.Exploring Vascular Recruitment in Tracheobronchial Adenoid Cystic Carcinoma from Perspective of Abnormal Collateral
Jun TENG ; Lei LI ; Junyan XIA ; Yi LUO ; Qinyan HONG ; Shuiping CHEN ; Hongwu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):260-269
Tracheobronchial adenoid cystic carcinoma (TACC) is a low-grade malignant tumor originating from the airway mucosa. Despite its slow progression,it is characterized by high invasiveness,frequent recurrence,and a strong tendency for metastasis. Preclinical studies have shown that vascular-targeted therapy holds significant potential. However,an effective systemic treatment for TACC has not been established yet. This study explored TACC from the perspective of "Feiji" in traditional Chinese medicine (TCM) as the starting point. It deeply investigated the mechanisms of abnormal collaterals and tumor vascular recruitment and further elaborated on the theoretical connection between abnormal collaterals and tumor vascular recruitment. Firstly,collateral hyperactivity led to disordered and erratic pulmonary collaterals. Their abnormal structures were similar to the disorderly and tortuous nature of tumor (pseudo)angiogenesis. This resulted in imbalances in the functions of circulation,perfusion,and reverse injection of the pulmonary collaterals,and then led to unrestrained collateral dysfunction and the accumulation of pathogenic factors. Secondly,the remodeling of the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) in TACC were critical processes in vascular co-option (VCO),representing the micro-level manifestation of the displacement of nutrient and defense. During this process,ECM remodeling made TACC cells more likely to hijack normal blood vessels,creating a complex vascular microenvironment conducive to tumor growth. In terms of treatment,this study proposed a TCM strategy of "regulating collaterals to expel pathogenic factors and nourishing collaterals to strengthen the healthy Qi",and listed potential TCM. These were intended to regulate the Qi and blood in the collaterals,repair the functions of abnormal collaterals,and intervene in the vascular recruitment process of TACC. Future research should focus on improving the TCM clinical syndrome characteristics of TACC. Through modern molecular biology techniques,it is necessary to deeply analyze the micro-level pattern of vascular recruitment in TACC. This would enrich the understanding of the profound connection between abnormal collaterals and tumor vascular recruitment,providing empirical evidence for TCM-targeted therapies for vascular recruitment in TACC.
2.Research Progress of Selective Nerve Root Block in the Treatment of Lumbosacral Radiculopathy
Leilei GAO ; Jun LIU ; Xiaoxia HUANG ; Tao LIU ; Yong TENG
Medical Journal of Peking Union Medical College Hospital 2025;16(3):739-748
Lumbosacral radiculopathy refers to the pain syndrome caused by inflammation or mechanical compression of the lumbar nerve root, mainly manifested as low back pain, and radiating to the lower limbs in cutaneous mode, which can be accompanied by numbness, paresthesia, tingling, muscle weakness and loss of specific reflexes and other symptoms, which not only bring physical pain and life inconvenience to the patients, but also bring huge economic burden to the social medical care. Selective nerve root block(SNRB), as a safe, effective, low-cost, precise and minimally invasive clinical technique, can accurately intervene in specific nerve roots and quickly relieve pain symptoms by reducing inflammation and improving the surrounding environment of nerves. However, there are still many challenges and controversies in practice, such as precise targeting requirements, drug selection, potential risks and complications, and differences in efficacy among different patient populations. The purpose of this review is to systematically review and analyze the existing research results on SNRB, so as to provide useful reference and guidance for the further development of this field.
3.Correspondence to editorial on “Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)”
Chuan LIU ; Ling YANG ; Hong YOU ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(2):e155-e157
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Correspondence to editorial on “Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)”
Chuan LIU ; Ling YANG ; Hong YOU ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(2):e155-e157
6.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
7.Correspondence to editorial on “Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)”
Chuan LIU ; Ling YANG ; Hong YOU ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(2):e155-e157
8.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
9.Effectiveness Evaluation of Low-dose Spiral Computed Tomography for Lung Cancer Screening in Minhang District of Shanghai
TENG JIAOYUE ; YAO WEIYUAN ; LI WEIXI ; CHENG YINGLING ; LI JUN ; XU HUILIN ; XU WANGHONG
Chinese Journal of Lung Cancer 2024;27(1):13-24
Background and objective Low-dose spiral computed tomography(LDCT)has been recommended for lung cancer screening in high-risk populations.However,evidence from Chinese populations was limited due to the dif-ferent criteria for high-risk populations and the short-term follow-up period.This study aimed to evaluate the effectiveness in Chinese adults based on the Lung Cancer Screening Program in Minhang District of Shanghai initiated in 2013.Methods A total of 26,124 subjects aged 40 years or above were enrolled in the Lung Cancer Screening Program during the period of 2013 and 2017.Results of LDCT examination,and screen-detected cancer cases in all participants were obtained from the Report-ing System of the Lung Cancer Screening Program.The newly-diagnosed cases and their vital status up to December 31,2020 were identified through a record linkage with the Shanghai Cancer Registry and the Shanghai Vital Statistics.Standardized incidence ratio(SIR)and 95%CI were calculated using the local population at ages of 40 or above as the reference.Proportions of early-stage cancer(stage 0-Ⅰ),pathological types,and 5-year observed survival rates of lung cancer cases were estimated and compared between the cases derived from the screened and non-screened populations.Cox regression models were applied to evaluate the hazard ratio(HR)and 95%CI of LDCT screening with all-cause death of the lung cancer cases.Results The crude and age-standardized incidence of lung cancer in screened population were 373.3(95%CI:343.1-406.1)and 70.3 per 100,000 person-years,respectively,with an SIR of 1.8(95%CI:1.6-1.9),which was observed to decrease with following-up time.The early-stage cancer accounted for 49.4%of all lung cancer cases derived from the screened population,significantly higher than 38.4%in cases from the non-screened population during the same period(P<0.05).The proportion of lung adenocarcinoma(40.7%vs 35.9%)and 5-year survival rate(53.7%vs 41.5%)were also significantly higher in the cases from the screened popu-lation(all P<0.05).LDCT screening was associated with 30%(HR=0.7,95%CI:0.6-0.8)reduced all-cause deaths of the cases.Conclusion The participants of the screening program are at high-risk of lung cancer.LDCT favors the early-detection of lung cancer and improves 5-year survival of the screened cases,indicating a great potential of LDCT in reducing the disease burden of lung cancer in Chinese populations.
10.Weight-dependent Fluorescence Lifetime Imaging for Viscosity Detection in Glycerol-water Mixtures
Teng LUO ; Yi-Hua ZHAO ; Yuan LU ; Wei YAN ; Jun-Le QU
Progress in Biochemistry and Biophysics 2024;51(5):1221-1230
ObjectiveBased on fluorescence lifetime imaging technology, a novel method for viscosity detection is proposed and the capability of different weighting of fluorescence lifetimes in distinguishing the viscosity of glycerol-water mixtures is evaluated, aiming to enhance the accuracy and reliability of viscosity differentiation. MethodsThis approach incorporates the principles of electronic weighting, introducing both amplitude-weighted average fluorescence lifetime (τm) and intensity-weighted average fluorescence lifetime (τi). Viscosity changes in glycerol-water mixtures are detected through τm and τi. τm Reflects the relationship between fluorescence signal amplitude and time, while τi focuses on the time-varying characteristics of fluorescence signal intensity. ResultsThe results of both τm and τi mutually corroborate each other, not only enhancing the reliability in detecting viscosity changes in glycerol-water mixtures but also revealing their unique roles in the detection process. Although τm plays a crucial role in capturing changes in fluorescence signal amplitude, τi exhibits higher accuracy in viscosity detection when considering the time-varying characteristics of fluorescence signal intensity. It is particularly noteworthy that, due to τi’s greater sensitivity, microenvironment viscosity detection can be directly analyzed using τi. This provides a more convenient approach for real-time, highly sensitive microfluidic viscosity monitoring. Therefore, through the comprehensive utilization of τm and τi, a more thorough and accurate understanding of the viscosity information in glycerol-water mixtures can be obtained, and specific parameters can be selected for in-depth analysis based on specific needs. ConclusionThe combination of amplitude weighting and intensity weighting allows for a more sensitive identification of subtle changes in viscosity under different conditions. The innovation of this method lies in its simultaneous consideration of multiple parameters, enhancing sensitivity and distinguishability to variations in viscosity. Therefore, this weighted-dependent fluorescence lifetime imaging technique not only introduces a novel approach for viscosity detection in glycerol-water mixtures but also provides a powerful analytical tool for various fields, including microfluidics, rheology, and research on novel functional materials.

Result Analysis
Print
Save
E-mail