1.Effects and mechanism of total alkaloids of Corydalis Rhizoma on the regulation of cuproptosis in rats with diabetic cardiomyopathy
Jun LI ; Yazhi QI ; Ya TANG ; Rui CAO ; Qiang XU ; Yusheng HAN
China Pharmacy 2025;36(7):801-806
OBJECTIVE To investigate the effects and mechanism of total alkaloids of Corydalis Rhizoma (TAC) on the regulation of cuproptosis in rats with diabetic cardiomyopathy (DCM) based on silence information regulator 1(Sirt1)/tumor protein 53(P53)signaling pathway. METHODS DCM rat model was induced by high-fat and high-sugar diet and intraperitoneal injection of streptozotocin. Thirty-two model rats were randomly divided into model group, TAC low-dose, medium-dose and high-dose groups (7, 10.5, 14 mg/kg), with 8 rats in each group. An additional 8 rats were assigned to normal control group. Related drugs or normal saline were administered intragastrically in each group, once a day, for 4 weeks. After the last medication, the fasting blood glucose (FBG) levels of the rats were measured. The levels of myocardial creatine kinase (CK), creatine kinase isoenzyme (CK-MB), and lactate dehydrogenase (LDH) in serum and myocardial tissue of rats were all detected. The pathological morphology, fibrosis degree, and Cu2+ deposition of myocardial tissue in rats were observed. The levels of Cu2+ and glutathione (GSH) in myocardial tissue, the expressions of Sirt1/P53 signaling pathway-related proteins [Sirt1, P53, solute carrier family 7 membrane 11 (SLC7A11)], and iron-sulfur cluster-related proteins [ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), aconitase 2 (ACO2), NADH-ubiquinone oxidoreductase core subunit S8 (NDUFS8), dihydrolipoamide acetyltransferase (DLAT), dihydrolipoamide succinyltransferase (DLST)], and heat shock protein 70 (HSP70) were all determined. RESULTS Compared with normal control group, the model group exhibited significantly elevated levels of FBG, CK, CK-MB and LDH in both serum and myocardial tissue, as well as increased 2+ levels of Cu in myocardial tissue and the expression of P53 and HSP70 proteins (P<0.05); the level of GSH and the expression levels of Sirt1, SLC7A11, FDX1, LIAS, ACO2, NDUFS8, DLAT, and DLST proteins in myocardial tissue were all significantly decreased (P<0.05); the myocardial tissue exhibited severe pathological damage, with numerous inflammatory cell infiltrations and significant fibrosis, as well as increased deposition of Cu2+. Compared with model group, most of the above quantitative indicators in rats were significantly reversed in TAC groups (P<0.05); the pathological damage to the myocardial tissue was alleviated, with reduced fibrosis and Cu2+ deposition. CONCLUSIONS TAC can ameliorate DCM in rats, and its mechanism of action may be related to activating the activity of the Sirt1/P53 signaling pathway, promoting the chelation of GSH with Cu2+, and inhibiting cuproptosis of cardiomyocyte.
2.miR-27a-3p promotes the proliferation of human hypertrophic scar fibroblasts by regulating mitogen-activated protein kinase signaling pathway
Jun LI ; Jingjing GONG ; Guobin SUN ; Rui GUO ; Yang DING ; Lijuan QIANG ; Xiaoli ZHANG ; Zhanhai FANG
Chinese Journal of Tissue Engineering Research 2025;29(8):1609-1617
BACKGROUND:Multiple studies have confirmed that mitogen-activated protein kinase(MAPK)signaling pathway is involved in cell proliferation,and microRNA(miR)is involved in the occurrence and development of hypertrophic scars.Therefore,the role of miR-27a-3p and MAPK signaling pathways in pathological scar formation has been further explored. OBJECTIVE:To explore the effect of miR-27a-3p on the proliferation of human hypertrophic scar fibroblasts through the MAPK signaling pathway. METHODS:The primary fibroblasts were isolated and collected from the skin samples.The primary fibroblasts were observed by inverted microscope and verified by immunofluorescence.The relative expression level of miR-27a-3p in tissues was detected by qRT-PCR.The target genes of hsa-miR-27a-3p were predicted using the database,and then the predicted target genes were enriched by gene ontology function analysis and biological pathway enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes.There were seven groups:blank control,negative control,miR-27a-3p mimic,miR-27a-3p inhibitor,miR-27a-3p mimic+p38 MAPK inhibitor,miR-27a-3p mimic+extracellular regulated protein kinase inhibitor,miR-27a-3p mimic+c-Jun N-terminal kinase inhibitor.Western blot was used to detect the levels of extracellular regulated protein kinase,c-Jun N-terminal kinase inhibitor.and p38 kinase and their phosphorylation levels.Cell counting kit-8 and EdU were used to detect cell proliferation. RESULTS AND CONCLUSION:Compared with normal skin fibroblasts,hypertrophic scar fibroblasts had stronger proliferative activity(P<0.05)and faster proliferation level(P<0.001).Compared with normal skin,miR-27a-3p was highly expressed in hypertrophic scars(P<0.001).Compared with the negative control group,overexpression of miR-27a-3p could promote cell proliferation activity(P<0.001)and proliferation levels(P<0.001).Compared with the negative control group,knockdown of miR-27a-3p could inhibit the proliferation activity(P<0.05)and proliferation levels(P<0.001).Compared with the negative control group,overexpression of miR-27a-3p promoted the phosphorylated levels of extracellular regulated protein kinase,c-Jun N-terminal kinase,and p38 mitogen-activated protein kinase(P<0.05).Compared with the negative control group,knockdown of miR-27a-3p inhibited the phosphorylated levels of extracellular regulated protein kinase,c-Jun N-terminal kinase,and p38 MAPK(P<0.05).Compared with the miR-27a-3p mimic group,specific inhibitors of extracellular regulated protein kinase,c-Jun N-terminal kinase,and p38 MAPK reversed the effects of miR-27a-3p on the proliferative activity(P<0.01)and proliferation level(P<0.001)of fibroblasts.To conclude,these results suggest that miR-27a-3p promotes the proliferation of human hypertrophic scar fibroblasts by activating the MAPK signaling pathway.
3.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
8.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
9.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
10.Effect of Modified of Bazhentang Combined with Guishentang on Th1/Th2 Immune Balance in Mouse Model of Embryo Implantation Dysfunction
Qiang DENG ; Fengying WU ; Lu YIN ; Jun WANG ; Zhaoyang YE ; Jiamei HUANG ; Zhichun JIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):68-76
ObjectiveTo investigate the mechanism of the modified of Bazhentang combined with Guishentang in improving pregnancy outcomes in mouse models of embryo implantation dysfunction by regulating T helper 1/T helper 2 (Th1/Th2) immune balance. MethodsEighty ICR female mice were randomly divided into four groups (n=20 per group) on gestational day 1 (GD1): control, model, western medicine, and traditional Chinese medicine (TCM) groups. Except for the control group, all mice received mifepristone solution (0.2 mg/mouse) via oral gavage on GD4 to induce embryo implantation dysfunction. The TCM group received a water decoction of the modified of Bazhentang combined with Guishentang (20.8 g·kg-1), with the western medicine group administered dydrogesterone (3.9 mg·kg-1), and the control/model groups given equal volumes of saline. All treatments were administered once daily from GD1 until one day before sample collection. Outcomes included implantation site counts (macroscopic observation), pregnancy rates, body weight, endometrial histopathology (hematoxylin-eosin staining), uterine expression of T-box expressed in T cells (T-bet), GATA-binding protein 3 (GATA3), interferon gamma (IFN-γ), and interleukin-4 (IL-4) at protein (Western blot) and mRNA (real-time polymerase chain reaction, Real-time PCR) levels, serum IFN-γ and IL-4 levels (enzyme-linked immunosorbent assay, ELISA), and Th1/Th2 immune balance evaluated by calculating T-bet/GATA3 and IFN-γ/IL-4 ratios. ResultsCompared to the control group, the model group showed no significant change in pregnancy rate but exhibited a marked reduction in average implantation sites and body weight (P<0.01). Histopathological analysis revealed endometrial abnormalities, including decreased glandular density, stromal compaction, and absence of nucleolar vacuoles. At the molecular level, uterine tissue in the model group demonstrated significantly upregulated expression of T-bet and IFN-γ (P<0.05, P<0.01), alongside markedly downregulated GATA3 and IL-4 expression (P<0.05, P<0.01). Serum analysis confirmed markedly elevated IFN-γ (P<0.01) and reduced IL-4 levels (P<0.01), resulting in significantly increased T-bet/GATA3 and IFN-γ/IL-4 ratios (P<0.01). Compared to the model group, pregnancy rates in all treatment groups showed no significant change. Implantation sites and body weight increased substantially (P<0.01), with restored endometrial morphology characterized by enhanced glandular density, stromal edema, and reappearance of nucleolar vacuoles. Significant downregulation of T-bet and IFN-γ (P<0.01) and upregulation of GATA3 and IL-4 (P<0.05, P<0.01) in uterine tissue were observed. Serum IFN-γ levels were significantly reduced (P<0.05, P<0.01), while IL-4 levels were significantly elevated (P<0.05). The Th1/Th2 ratios were significantly decreased (P<0.01). ConclusionThe modified of Bazhentang combined with Guishentang significantly enhances the number of embryo implantation sites in mice with embryo implantation dysfunction, potentially through modulating T-bet/GATA3 expression, restoring Th1/Th2 immune balance, and improving endometrial receptivity.

Result Analysis
Print
Save
E-mail