1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.Etiology and Management of Astronaut Low Back Pain Induced by Space Flight or Simulated Microgravity
Yan-Feng LIU ; Jing LEI ; Hao-Jun YOU
Progress in Biochemistry and Biophysics 2025;52(1):133-146
It has been demonstrated that long-term space flights have a significantly greater impact on the cardiovascular, skeletal, and nervous systems of astronauts. The structural and functional alterations in the skeletal and muscular systems resulting from exposure to weightlessness can lead to the development of low back pain, significantly impairing the ability of astronauts to perform tasks and respond to emergencies. Both space flight and simulated microgravity have been shown to result in low back pain among astronauts, with the following factors identified as primary contributors to this phenomenon. The occurrence of intervertebral disc (IVD) edema results in the stimulation of type IV mechanoreceptors, which subsequently activate nociceptive afferents. The protrusion of an IVD causes compression of the spinal nerve roots. Furthermore, the elongation of the vertebral column and/or the diminished lumbar curvature of the spine exert traction on the dorsal root nerves. Paravertebral muscle degeneration leads to the inhibition of decreased nociceptive activity of the wide-dynamic range neurons of the spinal dorsal horn. Moreover, endogenous pain descending facilitation triggered by conditioning stimulation can be enhanced via the thalamic mediodorsal nuclei, while endogenous pain descending inhibition triggered by conditioning stimulation can be weakened via the thalamic ventromedial nuclei. Psychological factors may contribute to the development of low back pain. The mechanisms governing the generation, maintenance, and alleviation of low back pain in weightlessness differ from those observed in normal gravitational environments. This presents a significant challenge for space medicine research. Therefore, the elucidation of the occurrence and development mechanism of low back pain in weightlessness is important for the prevention and treatment during space flight. To reduce the incidence of low back pain during long-term missions on the space station, astronauts may choose to wear specialized space clothing that can provide axial physiological loads, designed to stimulate both musculature and skeletal structures, mitigating potential increases in vertebral column length, diminished lumbar curvature, and intervertebral disc edema and/or muscular atrophy. Additionally, assuming a “fetal tuck position” described as the knees to chest position may increase lumbar IVD hydrostatic pressure, subsequently reducing disc volume, rectifying diminished lumbar curvature, and alleviating dorsal root nerve tensions. Moreover, this position may reduce type IV mechanoreceptor facilitation and nerve impulse propagation from the sinuvertebral nerves of the annulus fibrosus. Elongated posterior soft tissues (apophyseal joint capsules and ligaments) with spinal flexion may potentially stimulate type I and II mechanoreceptors. It is also recommended to exercise the paraspinal muscles to prevent and alleviate the decrease in their cross-sectional area and maintain their structure and function. Photobiomodulation has been proved to be an effective means of activating the pain descending inhibition pathway of the central nervous system. In addition, astronauts should be encouraged to participate in mission-related activities and strive to avoid psychological problems caused by the long-term confinement in a small space station. The article presents a concise review of potential causes and targeted treatment strategies for low back pain induced by space flight or simulated microgravity in recent years. Its objective is to further elucidate the mechanisms underlying the occurrence and development of low back pain in weightless environments while providing scientific evidence to inform the development of guidelines for preventing, treating, and rehabilitating low back pain during long-term space flights.
3.The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
Hui-Lin XU ; Huan-Jun XI ; Tao DUAN ; Jing LI ; Dan-Dan LI ; Kai WANG ; Chun-Yan ZHU
Progress in Biochemistry and Biophysics 2025;52(1):223-232
ObjectiveAutism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interaction, restricted and repetitive behaviors. Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits, which are closely related to the core symptoms of ASD. Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities. Therefore, this study explores the behavior of children with ASD in capturing attention to changes in topological properties. MethodsOur study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing (TD) age-matched controls. In an attention capture task, we recorded the saccadic behaviors of children with ASD and TD in response to topological change (TC) and non-topological change (nTC) stimuli. Saccadic reaction time (SRT), visual search time (VS), and first fixation dwell time (FFDT) were used as indicators of attentional bias. Pearson correlation tests between the clinical assessment scales and attentional bias were conducted. ResultsThis study found that TD children had significantly faster SRT (P<0.05) and VS (P<0.05) for the TC stimuli compared to the nTC stimuli, while the children with ASD did not exhibit significant differences in either measure (P>0.05). Additionally, ASD children demonstrated significantly less attention towards the TC targets (measured by FFDT), in comparison to TD children (P<0.05). Furthermore, ASD children exhibited a significant negative linear correlation between their attentional bias (measured by VS) and their scores on the compulsive subscale (P<0.05). ConclusionThe results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection. This atypical attention may affect the child’s cognitive and behavioral development, thereby impacting their social communication and interaction. In sum, our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
4.Study on the mechanism of gossypol acetic acid in the treatment of uterine fibroids based on proteomics
Xin ZHANG ; Abulaiti GULISITAN ; Jing SHEN ; Pei ZHANG ; Zuwen MA ; Jun YAO
China Pharmacy 2025;36(3):318-323
OBJECTIVE To investigate the mechanism of gossypol acetic acid (GAA) in the treatment of uterine fibroids. METHODS Human leiomyoma cells SK-UT-1 were selected as objects to investigate the effects of different concentrations (5, 10, 20, 40, 80, 160 μmol/L) of GAA on the activities of cell proliferation. 4D-DIA proteomic detection and bioinformatics analysis were carried out to screen differential proteins. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis were performed. The expressions of top 3 proteins [N-myc downstream regulated gene 1 (NDRG1), epidermal growth factor receptor feedback inhibitor 1 (ERRFI1), CXC chemokine ligand 3 (CXCL3)] with differential fold changes in SK-UT-1 cells were determined. RESULTS 10-160 μmol/L GAA could significantly reduce the survival rate of SK- UT-1 cells (P<0.05). Proteomics results showed that a total of 921 differentially expressed proteins were obtained, including 254 up-regulated proteins and 667 down-regulated proteins. The differentially expressed proteins were mainly distributed in mitochondria, nucleus, extracellular matrix, etc. Bioinformatics results showed that differentially expressed proteins were mainly involved in signaling pathways such as PI3K/AKT (phosphoinositide 3-kinase/protein kinase B), MAPK (mitogen-activated protein kinase), TNF (tumor necrosis factor), etc., which mainly involved cell apoptosis, aging, and movement. GAA significantly decreased protein expressions of NDRG1 and CXCL3 (P<0.05), but increased protein expression of ERRFI1 (P<0.05). CONCLUSIONS The improvement effect of GAA on uterine fibroids may involve signaling pathways such as PI3K/AKT, MAPK, TNF, etc. It can improve the occurrence and development of uterine fibroids by downregulating the expressions of NDRG1 and CXCL3 proteins, upregulating the expression of ERRFI1 protein, and affecting the proliferation and apoptosis of uterine fibroid cells.
5.Influencing factors and construction of a nomogram predictive model for postoperative anastomotic leak in patients with carcinoma of the esophagus and gastroesophageal junction
Hao PENG ; Siqi SHENG ; Jing CHEN ; Maitiasen MAIRHABA ; Haizhu SONG ; Jun YI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):208-215
Objective To analyze the influencing factors for postoperative anastomotic leak (AL) in carcinoma of the esophagus and gastroesophageal junction and construct a nomogram predictive model. Methods The patients who underwent radical esophagectomy at Jinling Hospital Affiliated to Nanjing University School of Medicine from January 2018 to June 2020 were included in this study. Relevant variables were screened using univariate and multivariate logistic regression analyses. A nomogram was then developed to predict the risk factors associated with postoperative AL. The predictive performance of the nomogram was validated using the receiver operating characteristic (ROC) curve. Results A total of 468 patients with carcinoma of the esophagus and gastroesophageal junction were included in the study, comprising 354 males and 114 females, with a mean age of (62.8±7.2) years. The tumors were predominantly located in the middle or lower esophagus, and 51 (10.90%) patients experienced postoperative AL. Univariate logistic regression analysis indicated that age, body mass index (BMI), tumor location, preoperative albumin levels, diabetes mellitus, anastomosis technique, anastomosis site, and C-reactive protein (CRP) levels were potentially associated with AL (P<0.05). Multivariate logistic regression analysis identified age, BMI, tumor location, diabetes mellitus, anastomosis technique, and CRP levels as independent risk factors for AL (P<0.05). A nomogram was developed based on the findings from the multivariate logistic regression analysis. The area under the receiver operating characteristic (ROC) curve was 0.803, indicating a strong concordance between the actual observations and the predicted outcomes. Furthermore, decision curve analysis demonstrated that the newly established nomogram holds significant value for clinical decision-making. Conclusion The predictive model for postoperative AL in patients with carcinoma of the esophagus and gastroesophageal junction demonstrates strong predictive validity and is essential for guiding clinical monitoring, early detection, and preventive strategies.
6.Study on anti-atherosclerosis mechanism of blood components of Guanxin Qiwei tablets based on HPLC-Q-Exactive-MS/MS and network pharmacology
Yuan-hong LIAO ; Jing-kun LU ; Yan NIU ; Jun LI ; Ren BU ; Peng-peng ZHANG ; Yue KANG ; Yue-wu WANG
Acta Pharmaceutica Sinica 2025;60(2):449-458
The analysis presented here is based on the blood components of Guanxin Qiwei tablets, the key anti-atherosclerosis pathway of Guanxin Qiwei tablets was screened by network pharmacology, and the anti-atherosclerosis mechanism of Guanxin Qiwei tablets was clarified and verified by cell experiments. HPLC-Q-Exactive-MS/MS technique was used to analyze the components of Guanxin Qiwei tablets into blood, to determine the precise mass charge ratio of the compounds, and to conduct a comprehensive analysis of the components by using secondary mass spectrometry fragments and literature comparison. Finally, a total of 42 components of Guanxin Qiwei tablets into blood were identified. To better understand the interactions, we employed the Swiss Target Prediction database to predict the associated targets. Atherosclerosis (AS) disease targets were searched in disease databases Genecard, OMIM and Disgent, and 181 intersection targets of disease targets and component targets were obtained by Venny 2.1.0 software. Protein interactions were analyzed by String database. The 32 core targets were selected by Cytscape software. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in DAVID database. It was found that the anti-atherosclerosis pathways of Guanxin Qiwei tablets mainly include lipid metabolism and atherosclerosis and AGE-RAGE signaling pathway in diabetic complications and other signal pathways. The core targets and the core compounds were interlinked, and it was found that cryptotanshinone and tanshinone ⅡA in Guanxin Qiwei tablets were well bound to TNF, PPAR
7.Clinical Safety Monitoring of 3 035 Cases of Juvenile Feilike Mixture After Marketing in Hospital
Jian ZHU ; Zhong WANG ; Jing LIU ; Jun LIU ; Wei YANG ; Yanan YU ; Hongli WU ; Sha ZHOU ; Zhiyu PAN ; Guang WU ; Mengmeng WU ; Zhiwei JING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):194-200
ObjectiveTo explore the clinical safety of Feilike Mixture (FLK) in the real world. MethodsThe safety of all children who received FLK from 29 institutions in 12 provinces between January 21,2021 and December 25,2021 was evaluated through prospective centralized surveillance and a nested case control study. ResultsA total of 3 035 juveniles were included. There were 29 research centers involved,which are distributed across 12 provinces,including one traditional Chinese medicine (TCM) hospital and 28 general hospitals. The average age among the juveniles was (4.77±3.56) years old,and the average weight was (21.81±12.97) kg. Among them,119 cases (3.92%) of juveniles had a history of allergies. Acute bronchitis was the main diagnosis for juveniles,with 1 656 cases (54.46%). FLK was first used in 2 016 cases (66.43%),and 142 juvenile patients had special dosages,accounting for 4.68%. Among them,92 adverse drug reactions (ADRs) occurred,including 73 cases of gastrointestinal system disorders,10 cases of metabolic and nutritional disorders,eight cases of skin and subcutaneous tissue diseases,two cases of vascular and lymphatic disorders,and one case of systemic diseases and various reactions at the administration site. The manifestations of ADRs were mainly diarrhea,stool discoloration,and vomiting,and no serious ADRs occurred. The results of multi-factor analysis indicated that special dosages (the use of FLK)[odds ratio (OR) of 2.642, 95% confidence interval (CI) of 1.105-6.323],combined administration: spleen aminopeptide (OR of 4.978, 95%CI of 1.200-20.655),and reason for combined administration: anti-infection (OR of 1.814, 95%CI of 1.071-3.075) were the risk factors for ADRs caused by FLK. Conclusion92 ADRs occurred among 3 035 juveniles using FLK. The incidence of ADRs caused by FLK was 3.03%,and the severity was mainly mild or moderate. Generally,the prognosis was favorable after symptomatic treatment such as drug withdrawal or dosage reduction,suggesting that FLK has good clinical safety.
8.Quality evaluation of Mongolian medicine Sendeng-4 based on qualitative and quantitative analysis combined with chemical pattern recognition
Fengye ZHOU ; Jun LI ; Qian ZHANG ; Rongjie LI ; Wei ZHANG ; Jing LIU ; Fang WANG ; Shengnan LI
China Pharmacy 2025;36(9):1040-1045
OBJECTIVE To evaluate the quality of Mongolian medicine Sendeng-4 based on qualitative and quantitative analysis combined with chemical pattern recognition, in order to provide the reference for its quality control. METHODS The chemical components in Sendeng-4 were analyzed qualitatively by HPLC-Q-Exactive-MS. The contents of 16 components (methyl gallate, ethyl gallate, epicatechin, dihydromyricetin, genipin-1-O-β-D-gentiobioside, caffeic acid, catechin, corilagin, deacetylasperulosidic acid methyl ester, rutin, geniposide, luteolin, myricetin, quercetin, ferulic acid, and toosendanin) in 15 batches of Sendeng-4 (sample S1-S15) were quantitatively analyzed by HPLC-MS/MS. Cluster analysis (CA), principal component analysis (PCA), and orthogonal partial least squares discriminant analysis were conducted and variable importance projection (VIP) value greater than 1 was used as the index to screen the differential components. RESULTS A total of 73 chemical components were identified in Sendeng-4, including 20 flavonoids, 16 tannins, 14 organic acids, etc. According to the quantitative analysis, the results exhibited that the average contentsthe of above 16 components in 15 batches of Sendeng-4 were 3.683-7.730, 2.391-6.952, 2 275.538-4 377.491, 2 699.188-3 537.924, 858.266-1 377.393, 3.366-11.003, 140.624-315.683,414.629-978.334, 285.501-1 510.457, 27.799-48.325, 3 625.415-6 309.563, 0.506-0.656, 442.337-649.283, 47.093-59.736, 12.942-15.822, 127.738-326.649 μg/g, respectively. According to the results of CA and PCA, 15 batches of samples could be clustered into two categories: S1-S3, S5-S6, S9-S10 and S13 were clustered into one category; S4, S7-S8, S11-S12, S14-S15 were clustered into one category. VIP values of geniposide, epicatechin, deacetylasperulosidic acid methyl ester and genipin-1-O- β-D-gentiobioside were all greater than 1. CONCLUSIONS HPLC-Q-Exactive-MS and HPLC-MS/MS techniques are employed for the qualitative and quantitative analysis of Sendeng-4. Through chemical pattern recognition analysis, four differential components are identified: geniposide, epicatechin, deacetylasperulosidic acid methyl ester, and genipin-1-O-β-D-gentiobioside.
9.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
10.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.

Result Analysis
Print
Save
E-mail