1.The dynamic movement for global health ─Hot topics on migrants and refugee health!, Supports for refugees─call for empowerment, Living conditions of refugees in Japan, Tragedy of Afghanistan: ─what the international society should do now?─, The role of international NGOs in the health sector in humanitarian crises: experiences of supporting the Thai-Myanmar border in chronic emergency situations, National Institute of Population and Social Security Research/Committee for Migration and Health, JAIH
Azusa IWAMOTO ; Yasuhide NAKAMURA ; Yukie KAN ; Khaled RESHAD ; Jun KOBAYASHI ; Yuka MAEKAWA ; Yoko FUCHIGAMI ; Masumi TANAKA ; Aya TABATA ; Tomoko KAMIYA ; Chika SATO ; Koichi IKEMURA ; Ryoko TOYAMA ; Miwa SAWABE ; Tadashi TAKEUCHI ; Toshiyuki WATANABE ; Tsubasa NAKAZATO ; Hiromi NISHIO ; Nanae ARITAKA ; Reiko HAYASHI
Journal of International Health 2022;37(3):113-131
2.Behavioral Intervention in the Overweight and ObeseEmployee: The Challenge of Promoting Weight Lossand Physical Activity
Rumi Maniwa ; Mamiko Iwamoto ; Akiko Nogi ; Masayuki Yamasaki ; Jian-jun Yang ; Hideaki Hanaoka ; Kuninori Shiwaku
Journal of Rural Medicine 2012;7(1):25-32
Effects of gender and employment situation on weight loss and lifestyle modification were assessed in a 3-month intervention study done for overweight and obesity. A total of 384 individuals in Izumo City Japan, participated from 2000 to 2006. Lifestyle modifications were quantitatively evaluated by calculating calories of energy intake and expenditure. Eleven men and 15 women failed to complete the intervention; they were significantly younger in both genders, and the women had a higher rate of employment than the completing group (91 men and 267 women). Intervention induced a weight loss of 1.9 kg for men and 1.6 kg for women, with no significant differences by gender. Significant differences were found in changes in energy intake and expenditure in both genders, but these disappeared after adjusting for weight. There were significant decreases in weight (1.6 kg in unemployed, 2.5 kg in employed) in men. Increases in walking and exercise for the employed were smaller than those for the unemployed. The relationship between changes in weight and energy balance by employment status was independently significant using multiple regression analysis. Employment is associated with difficulty in losing weight due to limited exercise time in behavioral intervention.
3.Effects of Risedronate on Osteoarthritis of the Knee.
Jun IWAMOTO ; Tsuyoshi TAKEDA ; Yoshihiro SATO ; Hideo MATSUMOTO
Yonsei Medical Journal 2010;51(2):164-170
The purpose of the present study was to discuss the effects of risedronate on osteoarthritis (OA) of the knee by reviewing the existing literature. The literature was searched with PubMed, with respect to prospective, double-blind, randomized placebo-controlled trials (RCTs), using the following search terms: risedronate, knee, and osteoarthritis. Two RCTs met the criteria. A RCT (n = 231) showed that risedronate treatment (15 mg/day) for 1 year improved symptoms. A larger RCT (n = 1,896) showed that risedronate treatment (5 mg/day, 15 mg/day, 35 mg/week, and 50 mg/week) for 2 years did not improve signs or symptoms, nor did it alter radiological progression. However, a subanalysis study (n = 477) revealed that patients with marked cartilage loss preserved the structural integrity of subchondral bone by risedronate treatment (15 mg/day and 50 mg/week). Another subanalysis study (n = 1,885) revealed that C-terminal crosslinking telopeptide of type II collagen (CTX-II) decreased with risedronate treatment in a dose-dependent manner, and levels reached after 6 months were associated with radiological progression at 2 years. The results of these RCTs show that risedronate reduces the marker of cartilage degradation (CTX-II), which could contribute to attenuation of radiological progression of OA by preserving the structural integrity of subchondral bone. The review of the literature suggests that higher doses of risedronate (15 mg/day) strongly reduces the marker of cartilage degradation (CTX-II), which could contribute to attenuation of radiological progression of OA by preserving the structural integrity of subchondral bone.
Animals
;
Calcium Channel Blockers/pharmacology/*therapeutic use
;
Cartilage/drug effects
;
Diphosphonates/therapeutic use
;
Etidronic Acid/*analogs & derivatives/pharmacology/therapeutic use
;
Humans
;
Osteoarthritis, Knee/*drug therapy
4.Influence of Ovariectomy on Bone Turnover and Trabecular Bone Mass in Mature Cynomolgus Monkeys.
Jun IWAMOTO ; Azusa SEKI ; Masao MATSUURA ; Yoshihiro SATO ; Tsuyoshi TAKEDA ; Hideo MATSUMOTO ; James K YEH
Yonsei Medical Journal 2009;50(3):358-367
PURPOSE: To examine the influence of ovariectomy (OVX) on bone turnover and trabecular bone mass at the 3 clinically important skeletal sites in mature cynomolgus monkeys. MATERIALS AND METHODS: Six female cynomolgus monkeys, aged 17-21 years, were randomized into 2 groups by the stratified weight: the OVX and sham-operation groups (n = 3 in each group). The experimental period was 16 months. Lumbar bone mineral density (BMD) in vivo and serum and urinary bone turnover markers were longitudinally measured, and peripheral quantitative computed tomographic and bone histomorphometric analyses were performed on trabecular bone of the lumbar vertebra, femoral neck, and distal radius at the end of the experiment. RESULTS: OVX induced in a reduction in lumbar BMD compared with the sham controls and the baseline, as a result of increased serum levels of bone-specific alkaline phosphatase and urinary levels of cross-lined N- and C-terminal telopeptides of type I collagen. Furthermore, OVX induced reductions in trabecular volumetric BMD and trabecular bone mass compared with the sham controls, with increased bone formation rate at the lumbar vertebra, femoral neck, and distal radius. CONCLUSION: The results indicated that OVX in mature cynomolgus monkeys (17-21 years of age) increased bone turnover and induced trabecular bone loss at the three skeletal sites compared with the sham controls. Thus, mature cynomolgus monkeys could be utilized for preclinical studies to examine the effects of interventions on bone turnover and trabecular bone mass at the 3 clinically important skeletal sites.
Alkaline Phosphatase/blood
;
Animals
;
*Bone Density
;
Collagen Type I/urine
;
Female
;
Femur Neck/metabolism
;
Lumbar Vertebrae/metabolism
;
Macaca fascicularis/*physiology
;
Ovariectomy/*adverse effects
;
Radius/metabolism
;
Random Allocation
5.Comparison of the Effect of Vitamin K2 and Risedronate on Trabecular Bone in Glucocorticoid-Treated Rats: A Bone Histomorphometry Study.
Jun IWAMOTO ; Hideo MATSUMOTO ; Tsuyoshi TADEDA ; Yoshihiro SATO ; James K YEH
Yonsei Medical Journal 2009;50(2):189-194
PURPOSE: To compare the effect of vitamin K2 and risedronate on trabecular bone in glucocorticoid (GC)-treated rats. MATERIALS AND METHODS: Forty-eight Sprague-Dawley female rats, 3 months of age, were randomized by the stratified weight method into 5 groups according to the following treatment schedule: age-matched control, GC administration, and GC administration with concomitant administration of vitamin K2, risedronate, or vitamin K2 + risedronate. GC (methylprednisolone sodium succinate, 5.0 mg/kg) and risedronate (10 microgram/kg) were administered subcutaneously three and five times a week, respectively. Vitamin K2 (menatetrenone, 30 mg/kg) was administered orally three times a week. At the end of the 8-week experiment, bone histomorphometric analysis was performed on trabecular bone of the tibial proximal metaphysis. RESULTS: GC administration decreased trabecular bone mass compared with age-matched controls because of decreased bone formation (mineralizing surface, mineral apposition rate, and bone formation rate) and increased bone erosion. Vitamin K2 attenuated GC-induced trabecular bone loss by preventing GC-induced decrease in bone formation (mineralizing surface) and subsequently reducing GC-induced increase in bone erosion. Risedronate prevented GC-induced trabecular bone loss by preventing GC-induced increase in bone erosion although it also suppressed bone formation (mineralizing surface, mineral apposition rate, and bone formation rate). Vitamin K2 mildly attenuated suppression of bone formation (mineralizing surface) and bone erosion caused by risedronate without affecting trabecular bone mass when administered in combination. CONCLUSION: The present study showed differential effect of vitamin K2 and risedronate on trabecular bone in GC-treated rats.
Animals
;
Bone Density/drug effects
;
Bone and Bones/anatomy & histology/*drug effects/metabolism
;
Etidronic Acid/*analogs & derivatives/pharmacology
;
Female
;
Glucocorticoids/*pharmacology
;
Random Allocation
;
Rats
;
Vitamin K/*pharmacology
;
Vitamins/*pharmacology
6.Comparison of the Effects of Alendronate and Alfacalcidol on Hip Bone Mineral Density and Bone Turnover in Japanese Men Having Osteoporosis or Osteopenia with Clinical Risk Factors for Fractures.
Jun IWAMOTO ; Yoshihiro SATO ; Mitsuyoshi UZAWA ; Tsuyoshi TAKEDA ; Hideo MATSUMOTO
Yonsei Medical Journal 2009;50(4):474-481
PURPOSE: The comparative effects of alendronate and alfacalcidol on bone mineral density (BMD) and bone turnover have already been established in postmenopausal women with osteoporosis. An open-labeled prospective study was conducted to compare the treatment effects of alendronate and alfacalcidol on hip BMD and bone turnover in Japanese men with osteoporosis or osteopenia with clinical risk factors for fractures. MATERIALS AND METHODS: One hundred twelve men with osteoporosis or osteopenia with clinical risk factors for fractures (mean age: 71.4 years) were randomly divided into two groups of 56 patients each: the alendronate (5 mg daily) and alfacalcidol (1 microgram daily) groups. The BMD of the total hip, urinary level of cross-linked N-terminal telopeptides of type I collagen (NTX), and serum levels of bone-specific alkaline phosphatase (BSAP) were measured during the 12-month-treatment period. RESULTS: Forty-five patients in the alendronate group and 42 patients in the alfacalcidol group completed the trial. Alendronate increased BMD (+2.3% at 12 months) following reductions in the urinary level of NTX (-46.4% at 3 months) and serum level of BSAP (-34.1% at 12 months), while alfacalcidol sustained BMD (-1.9% at 12 months) as well as the urinary level of NTX (+13.2% at 3 months) and serum level of BSAP (+1.8% at 12 months). CONCLUSION: The present study confirmed that alendronate has better efficacy than alfacalcidol (active control) in increasing hip BMD and reducing bone turnover in Japanese men with osteoporosis or osteopenia with clinical risk factors for fractures.
Aged
;
Aged, 80 and over
;
Alendronate/pharmacology/therapeutic use
;
Asian Continental Ancestry Group
;
Bone Density/*drug effects
;
*Bone Density Conservation Agents/pharmacology/therapeutic use
;
Bone Diseases, Metabolic/*drug therapy
;
Fractures, Bone/*prevention & control
;
Hip Joint/*drug effects/pathology
;
Humans
;
*Hydroxycholecalciferols/pharmacology/therapeutic use
;
Male
;
Middle Aged
;
Osteoporosis/*drug therapy
;
Treatment Outcome
7.Comparison of the Effects of Alendronate and Alfacalcidol on Hip Bone Mineral Density and Bone Turnover in Japanese Men Having Osteoporosis or Osteopenia with Clinical Risk Factors for Fractures.
Jun IWAMOTO ; Yoshihiro SATO ; Mitsuyoshi UZAWA ; Tsuyoshi TAKEDA ; Hideo MATSUMOTO
Yonsei Medical Journal 2009;50(4):474-481
PURPOSE: The comparative effects of alendronate and alfacalcidol on bone mineral density (BMD) and bone turnover have already been established in postmenopausal women with osteoporosis. An open-labeled prospective study was conducted to compare the treatment effects of alendronate and alfacalcidol on hip BMD and bone turnover in Japanese men with osteoporosis or osteopenia with clinical risk factors for fractures. MATERIALS AND METHODS: One hundred twelve men with osteoporosis or osteopenia with clinical risk factors for fractures (mean age: 71.4 years) were randomly divided into two groups of 56 patients each: the alendronate (5 mg daily) and alfacalcidol (1 microgram daily) groups. The BMD of the total hip, urinary level of cross-linked N-terminal telopeptides of type I collagen (NTX), and serum levels of bone-specific alkaline phosphatase (BSAP) were measured during the 12-month-treatment period. RESULTS: Forty-five patients in the alendronate group and 42 patients in the alfacalcidol group completed the trial. Alendronate increased BMD (+2.3% at 12 months) following reductions in the urinary level of NTX (-46.4% at 3 months) and serum level of BSAP (-34.1% at 12 months), while alfacalcidol sustained BMD (-1.9% at 12 months) as well as the urinary level of NTX (+13.2% at 3 months) and serum level of BSAP (+1.8% at 12 months). CONCLUSION: The present study confirmed that alendronate has better efficacy than alfacalcidol (active control) in increasing hip BMD and reducing bone turnover in Japanese men with osteoporosis or osteopenia with clinical risk factors for fractures.
Aged
;
Aged, 80 and over
;
Alendronate/pharmacology/therapeutic use
;
Asian Continental Ancestry Group
;
Bone Density/*drug effects
;
*Bone Density Conservation Agents/pharmacology/therapeutic use
;
Bone Diseases, Metabolic/*drug therapy
;
Fractures, Bone/*prevention & control
;
Hip Joint/*drug effects/pathology
;
Humans
;
*Hydroxycholecalciferols/pharmacology/therapeutic use
;
Male
;
Middle Aged
;
Osteoporosis/*drug therapy
;
Treatment Outcome
8.Comparison of Effects of Alendronate and Raloxifene on Lumbar Bone Mineral Density, Bone Turnover, and Lipid Metabolism in Elderly Women with Osteoporosis.
Jun IWAMOTO ; Yoshihiro SATO ; Mitsuyoshi UZAWA ; Tsuyoshi TAKEDA ; Hideo MATSUMOTO
Yonsei Medical Journal 2008;49(1):119-128
PURPOSE: To compare the effects of alendronate and raloxifene on lumbar bone mineral density (BMD), bone turnover, and lipid metabolism in elderly women with osteoporosis. Subjects and Methods: One hundred twenty-two postmenopausal women with osteoporosis (mean age: 69.4 years) were randomly divided into 2 groups of 61 patients: the alendronate group and the raloxifene group. BMD of the lumbar spine, urinary level of cross-linked N-terminal telopeptides of type I collagen (NTX), and serum levels of alkaline phosphatase (ALP), total cholesterol (TC), high and low density lipoprotein cholesterols (LDL-C and HDL-C, respectively), and triglycerides (TG) were measured during the 12-month-treatment period. RESULTS: The trial in 50 patients in the alendronate group and 52 patients in the raloxifene group could be completed. Both alendronate and raloxifene increased lumbar BMD (+8.0% and +2.4% at 12 months, respectively), followed by reductions of urinary NTX level and serum ALP level; however, the effects of alendronate were more pronounced than those of raloxifene. Only raloxifene reduced the serum levels of TC and LDL-C (-3.9% and -7.7% at 12 months, respectively), without any significant effect on the serum HDL-C and TG levels. CONCLUSION: The present study confirmed the efficacy of alendronate greater than raloxifene in increasing lumbar BMD through its effect on marked reduction of the bone turnover more than by raloxifene, and some beneficial effects of raloxifene on lipid metabolism in elderly women with osteoporosis.
Aged
;
Alendronate/adverse effects/pharmacology/*therapeutic use
;
Biological Markers/blood
;
Bone Density/*drug effects
;
Calcium/blood
;
Female
;
Fractures, Bone/prevention & control
;
Humans
;
Lipid Metabolism/*drug effects
;
Osteoporosis/*drug therapy/*metabolism
;
Phosphorus/blood
;
Raloxifene/adverse effects/pharmacology/*therapeutic use
;
Spine/drug effects
9.Effects of Vitamin K2 on the Development of Osteopenia in Rats as the Models of Osteoporosis.
Jun IWAMOTO ; Tsuyoshi TAKEDA ; Yoshihiro SATO
Yonsei Medical Journal 2006;47(2):157-166
Vitamin K2 is widely used for the treatment of osteoporosis in Japan. To understand the effects of vitamin K2 on bone mass and bone metabolism, we reviewed its effects on the development of osteopenia in rats, which characterizes models of osteoporosis. Vitamin K2 was found to attenuate the increase in bone resorption and/or maintain bone formation, reduce bone loss, protect against the loss of trabecular bone mass and its connectivity, and prevent the decrease in strength of the long bone in ovariectomized rats. However, combined treatment of bisphosphonates and vitamin K2 had an additive effect in preventing the deterioration of the trabecular bone architecture in ovariectomized rats, while the combined treatment of raloxifene and vitamin K2 improved the bone strength of the femoral neck. The use of vitamin K2 alone suppressed the increase in trabecular bone turnover and endocortical bone resorption, which attenuated the development of cancellous and cortical osteopenia in orchidectomized rats. In addition, vitamin K2 inhibited the decrease in bone formation in prednisolone-treated rats, thereby preventing cancellous and cortical osteopenia. In sciatic neurectomized rats, vitamin K2 suppressed endocortical bone resorption and stimulated bone formation, delaying the reduction of the trabecular thickness and retarding the development of cortical osteopenia. Vitamin K2 also prevented the acceleration of bone resorption and the reduction in bone formation in tail-suspended rats, which counteracted cancellous bone loss. Concomitant use of vitamin K2 with a bisphosphonate ameliorated the suppression of bone formation and more effectively prevented cancellous bone loss in tail-suspended rats. Vitamin K2 stimulated renal calcium reabsorption, retarded the increase in serum parathyroid hormone levels, and attenuated cortical bone loss primarily by suppressing bone resorption in calcium-deficient rats while maintaining the strength of the long bone in rats with magnesium deficiency. These findings suggest that vitamin K2 may not only stimulate bone formation, but may also suppress bone resorption. Thus, vitamin K2 could regulate bone metabolism in rats, which represented the various models of osteoporosis. However, the effects of vitamin K2 on bone mass and bone metabolism seem to be modest.
Vitamin K 2/chemistry/metabolism/*pharmacology
;
Tomography, X-Ray Computed
;
Tibia/pathology
;
Rats
;
Osteoporosis/*drug therapy/*prevention & control
;
Male
;
Magnesium Deficiency/diagnosis
;
Magnesium/metabolism
;
Homeostasis
;
Female
;
*Disease Models, Animal
;
Diphosphonates
;
Calcium/metabolism
;
Bone and Bones/*drug effects/metabolism
;
Bone Resorption
;
Bone Diseases, Metabolic/*metabolism
;
Animals
10.Comparison of Effect of Treatment with Etidronate and Alendronate on Lumbar Bone Mineral Density in Elderly Women with Osteoporosis.
Jun IWAMOTO ; Tsuyoshi TAKEDA ; Yoshihiro SATO ; Mitsuyoshi UZAWA
Yonsei Medical Journal 2005;46(6):750-758
The purpose of this open-labeled prospective study was to compare the treatment effects of cyclical etidronate and alendronate on the lumbar bone mineral density (BMD), bone resorption, and back pain in elderly women with osteoporosis. Fifty postmenopausal women with osteoporosis, age ranging from 55 to 86 years (mean: 70.7 years), were randomly divided into two groups with 25 patients in each group: the cyclical etidronate group (etidronate 200 mg daily for 2 weeks every 3 months) and the alendronate group (5 mg daily). The BMD of the lumbar spine (L1-L4) measured by DXA, the urinary cross-linked N-terminal telopeptides of type I collagen (NTX) level measured by the enzyme-linked immunosorbent assay, and back pain evaluated by the face scale score were assessed at baseline, 6 months, and 12 months. There were no significant differences in baseline characteristics including age, body mass index, years since menopause, lumbar BMD, urinary NTX level, and face scale score between the two treatment groups. Etidronate treatment sustained the lumbar BMD following a reduction in the urinary NTX level and improved back pain, while alendronate treatment reduced the urinary NTX level more significantly, resulting in an increase in the lumbar BMD, and similarly improved back pain. No serious adverse events were observed in either group. This study confirmed that alendronate treatment had a greater efficacy than etidronate treatment in increasing the lumbar BMD through the reduction of bone resorption in elderly women with osteoporosis.
Spinal Fractures/prevention & control/radiography
;
Osteoporosis, Postmenopausal/*drug therapy
;
Middle Aged
;
Lumbar Vertebrae/*drug effects
;
Humans
;
Female
;
Etidronic Acid/adverse effects/*therapeutic use
;
Bone Density Conservation Agents/adverse effects/*therapeutic use
;
Bone Density/*drug effects
;
Biological Markers/blood/urine
;
Back Pain/drug therapy
;
Alendronate/adverse effects/*therapeutic use
;
Aged, 80 and over
;
Aged


Result Analysis
Print
Save
E-mail