1.Influencing factors and construction of a nomogram predictive model for postoperative anastomotic leak in patients with carcinoma of the esophagus and gastroesophageal junction
Hao PENG ; Siqi SHENG ; Jing CHEN ; Maitiasen MAIRHABA ; Haizhu SONG ; Jun YI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):208-215
Objective To analyze the influencing factors for postoperative anastomotic leak (AL) in carcinoma of the esophagus and gastroesophageal junction and construct a nomogram predictive model. Methods The patients who underwent radical esophagectomy at Jinling Hospital Affiliated to Nanjing University School of Medicine from January 2018 to June 2020 were included in this study. Relevant variables were screened using univariate and multivariate logistic regression analyses. A nomogram was then developed to predict the risk factors associated with postoperative AL. The predictive performance of the nomogram was validated using the receiver operating characteristic (ROC) curve. Results A total of 468 patients with carcinoma of the esophagus and gastroesophageal junction were included in the study, comprising 354 males and 114 females, with a mean age of (62.8±7.2) years. The tumors were predominantly located in the middle or lower esophagus, and 51 (10.90%) patients experienced postoperative AL. Univariate logistic regression analysis indicated that age, body mass index (BMI), tumor location, preoperative albumin levels, diabetes mellitus, anastomosis technique, anastomosis site, and C-reactive protein (CRP) levels were potentially associated with AL (P<0.05). Multivariate logistic regression analysis identified age, BMI, tumor location, diabetes mellitus, anastomosis technique, and CRP levels as independent risk factors for AL (P<0.05). A nomogram was developed based on the findings from the multivariate logistic regression analysis. The area under the receiver operating characteristic (ROC) curve was 0.803, indicating a strong concordance between the actual observations and the predicted outcomes. Furthermore, decision curve analysis demonstrated that the newly established nomogram holds significant value for clinical decision-making. Conclusion The predictive model for postoperative AL in patients with carcinoma of the esophagus and gastroesophageal junction demonstrates strong predictive validity and is essential for guiding clinical monitoring, early detection, and preventive strategies.
2.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
3.Etiology and Management of Astronaut Low Back Pain Induced by Space Flight or Simulated Microgravity
Yan-Feng LIU ; Jing LEI ; Hao-Jun YOU
Progress in Biochemistry and Biophysics 2025;52(1):133-146
It has been demonstrated that long-term space flights have a significantly greater impact on the cardiovascular, skeletal, and nervous systems of astronauts. The structural and functional alterations in the skeletal and muscular systems resulting from exposure to weightlessness can lead to the development of low back pain, significantly impairing the ability of astronauts to perform tasks and respond to emergencies. Both space flight and simulated microgravity have been shown to result in low back pain among astronauts, with the following factors identified as primary contributors to this phenomenon. The occurrence of intervertebral disc (IVD) edema results in the stimulation of type IV mechanoreceptors, which subsequently activate nociceptive afferents. The protrusion of an IVD causes compression of the spinal nerve roots. Furthermore, the elongation of the vertebral column and/or the diminished lumbar curvature of the spine exert traction on the dorsal root nerves. Paravertebral muscle degeneration leads to the inhibition of decreased nociceptive activity of the wide-dynamic range neurons of the spinal dorsal horn. Moreover, endogenous pain descending facilitation triggered by conditioning stimulation can be enhanced via the thalamic mediodorsal nuclei, while endogenous pain descending inhibition triggered by conditioning stimulation can be weakened via the thalamic ventromedial nuclei. Psychological factors may contribute to the development of low back pain. The mechanisms governing the generation, maintenance, and alleviation of low back pain in weightlessness differ from those observed in normal gravitational environments. This presents a significant challenge for space medicine research. Therefore, the elucidation of the occurrence and development mechanism of low back pain in weightlessness is important for the prevention and treatment during space flight. To reduce the incidence of low back pain during long-term missions on the space station, astronauts may choose to wear specialized space clothing that can provide axial physiological loads, designed to stimulate both musculature and skeletal structures, mitigating potential increases in vertebral column length, diminished lumbar curvature, and intervertebral disc edema and/or muscular atrophy. Additionally, assuming a “fetal tuck position” described as the knees to chest position may increase lumbar IVD hydrostatic pressure, subsequently reducing disc volume, rectifying diminished lumbar curvature, and alleviating dorsal root nerve tensions. Moreover, this position may reduce type IV mechanoreceptor facilitation and nerve impulse propagation from the sinuvertebral nerves of the annulus fibrosus. Elongated posterior soft tissues (apophyseal joint capsules and ligaments) with spinal flexion may potentially stimulate type I and II mechanoreceptors. It is also recommended to exercise the paraspinal muscles to prevent and alleviate the decrease in their cross-sectional area and maintain their structure and function. Photobiomodulation has been proved to be an effective means of activating the pain descending inhibition pathway of the central nervous system. In addition, astronauts should be encouraged to participate in mission-related activities and strive to avoid psychological problems caused by the long-term confinement in a small space station. The article presents a concise review of potential causes and targeted treatment strategies for low back pain induced by space flight or simulated microgravity in recent years. Its objective is to further elucidate the mechanisms underlying the occurrence and development of low back pain in weightless environments while providing scientific evidence to inform the development of guidelines for preventing, treating, and rehabilitating low back pain during long-term space flights.
4.Study on surface microcirculation sensitization of acupuncture points related to cold coagulation and stasis syndrome in primary dysmenorrhea
Xuxin LI ; Xuesong WANG ; Miao LIN ; Mingjian ZHANG ; Yuanbo GAO ; Xifen ZHANG ; Hao CHEN ; Haiping LI ; Xiaojun ZHENG ; Xisheng FAN ; Jun LIU ; Juncha ZHANG ; Yanfen SHE
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):253-269
Objective:
To assess the dynamic changes of microcirculation at acupoints in patients with primary dysmenorrhea and cold congelation and blood stasis syndrome using laser speckle blood flow imaging.
Methods:
Patients with primary dysmenorrhea and cold coagulation and blood stasis syndrome (primary dysmenorrhea group, n=53) and healthy female college students(control group, n=57) who met the inclusion and exclusion criteria from October 2020 to July 2022 were enrolled at Hebei University of Chinese Medicine. On the premenstrual and first day of menstruation, a laser speckle blood flow imaging system was used to measure the microcirculation blood flow perfusion on the surface of acupoints related to the conception, thoroughfare, and governor vessels, and stomach, spleen, and bladder meridians in the abdomen and lumbosacral regions. The dynamic changes in microcirculation were calculated based on the difference in average blood flow perfusion at each acupoint before and after menstruation. Receiver operating curve (ROC) analysis was used to analyze the diagnostic efficacy of dynamic changes in microcirculation on the surface of each acupoint. The microcirculation sensitization rate of acupoints was calculated.
Results:
Compared with the control group, the dynamic changes in microcirculation at the following acupoints in the primary dysmenorrhea group were increased (P<0.05): conception vessel (Yinjiao[CV7], Qihai[CV6], Shimen[CV5], Guanyuan[CV4]); left thoroughfare vessel (left Huangshu[KI16], left Zhongzhu[KI15], left Siman[KI14], left Qixue[KI13], left Dahe[KI12], left Henggu[KI11]); left stomach meridian (left Tianshu[ST25], left Wailing[ST26], left Qichong[ST30]); left spleen meridian (left Daheng[SP15], left Fujie[SP14]); right thoroughfare vessel (right Huangshu[KI16], right Zhongzhu[KI15], right Siman[KI14], right Qixue[KI13], right Dahe[KI12], right Henggu[KI11]); right stomach meridian (right Wailing[ST26], right Daju[ST27], right Shuidao[ST28], right Guilai[ST29], right Qichong[ST30]); and right spleen meridian (right Fujie[SP14]). The area under the ROC curve of conception vessel (Yinjiao[CV7], Qihai[CV6], Shimen[CV5], Guanyuan[CV4]), thoroughfare vessel (right Siman[KI14], left Huangshu[KI16], right Qixue[KI13], right Zhongzhu[KI15], right Dahe[KI12], left Zhongzhu[KI15], left Siman[KI14], right Huangshu[KI16], left Qixue[KI13], right Henggu[KI11], left Henggu[KI11], left Dahe[KI12]); stomach meridian (left Tianshu[ST25], right Guilai[ST29], left Wailing[ST26], right Shuidao[ST28], right Daju[ST27], right Wailing[ST26], right Qichong[ST30], left Qichong[ST30]), and spleen meridian (left Daheng[SP15], left Fujie[SP14], right Fujie[SP14]) was 0.610-0.682 (P<0.05). Compared with the control group, the sensitization rate of some acupoints in the primary dysmenorrhea group increased (P<0.05).
Conclusion
With the onset of menstruation, the blood flow perfusion of some acupoints in the abdomen (thoroughfare, and conception vessels, and stomach and spleen meridians) of patients with primary dysmenorrhea and cold blood coagulation and blood stasis syndrome increased, and the status of acupoints changed from a resting state to an active state. These acupoints are sensitive in patients with primary dysmenorrhea and cold blood coagulation and blood stasis syndrome and have a certain diagnostic efficacy, providing a basis for further analyzing the efficacy and mechanism of acupuncture and moxibustion to treat primary dysmenorrhea with cold blood coagulation and blood stasis syndrome.
5.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
6.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
7.Action Mechanism of Resolving Dampness and Phlegm of Pinelliae Rhizoma Praeparatum Based on Interconnection Between Lung and Large Intestine
Xingbao TAO ; Chentao ZHAO ; Xiaofu ZHU ; Hao WU ; Jun HE ; Weiguo CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):122-131
ObjectiveTo investigate the effects of Pinelliae Rhizoma Praeparatum (PRP) on lung tissue, gut microbiota, and short-chain fatty acid (SCFA) metabolism in a model of mice with cold fluid retention in the lung and explore its mechanism of action in resolving dampness and phlegm based on the interconnection between the lung and large intestine. MethodsFifty female ICR mice were randomly divided into a normal group, model group, positive control group (Xiaoqinglong granules, 6.5 g·kg-1), and high-dose and low-dose PRP decoction groups (3.0, 1.5 g·kg-1), with 10 mice in each group. A model of mice with cold fluid retention in the lung was established using ovalbumin (OVA) sensitization combined with cold-water immersion. Drug interventions were conducted from day 18 to day 33 for 15 consecutive days. The airway resistance value of the mice was measured using a non-invasive pulmonary function analyzer. Phlegm-resolving effects were evaluated via a microplate reader. Eosinophil and neutrophil counts in bronchoalveolar lavage fluid (BALF) were analyzed using an automated hematology analyzer. Serum levels of total immunoglobulin E (IgE), interferon-γ (IFN-γ), interleukin-4 (IL-4), and BALF levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were quantified by enzyme-linked immunosorbent assay (ELISA). Lung histopathology was assessed using hematoxylin-eosin (HE) staining. Immunohistochemistry (IHC) was employed to detect mucin 5AC (MUC5AC) and aquaporin 5 (AQP5) protein expression in lung tissue. Gut microbiota composition was analyzed via agarose gel electrophoresis, and fecal SCFA levels were measured by gas chromatography-mass spectrometry (GC-MS). ResultsCompared with the normal group, the model group exhibited significantly increased airway resistance value (RI) (P<0.05), elevated eosinophil and neutrophil counts and IL-6 and IL-8 levels in BALF (P<0.05), increased serum IgE and IL-4 levels (P<0.05), with reduced IFN-γ levels (P<0.05). It also showed thickened bronchial walls, widened alveolar septa, narrowed lumens, and mucus plugs in lung tissue, upregulated MUC5AC protein expression and downregulated AQP5 protein expression (P<0.05), decreased relative abundance of beneficial gut microbiota (Firmicutes, Clostridia, Clostridiales, Lactobacillaceae, and Lactobacillus), and increased abundance of harmful microbiota (Bacteroidetes, Bacteroidia, Bacteroidales, Muribaculaceae, and Muribaculum). In addition, the model group presented reduced fecal SCFA levels (acetate, propionate, and butyrate) (P<0.05). After the intervention of PRP decoction, compared to the model group, all drug administration groups showed decreased RI (P<0.05), increased phenol red excretion, declined eosinophil and neutrophil counts and IL-6, IL-8, IgE, and IL-4 levels (P<0.05), and improved IFN-γ levels (P<0.05) and lung pathology improved. The MUC5AC protein expression decreased (P<0.05), and the AQP5 protein expression increased (P<0.05). The disorder of gut microbiota was improved, and the diversity of gut microbiota was restored, with a significantly increased relative abundance ratio of beneficial microbiota (P<0.05) and a significantly reduced relative abundance ratio of harmful microbiota (P<0.05). The SCFA levels (acetate, propionate, and butyrate) increased (P<0.05). The efficacy indicators of serum inflammatory factors (IgE, IL-4, and IFN-γ), phlegm-resolving effect, airway resistance, total pathological score, and the protein expression of MUC5AC and AQP5 were correlated with gut microbiota and SCFAs. ConclusionPRP decoction alleviates cold-phlegm syndrome by modulating the gut-lung axis, promoting beneficial gut microbiota, enhancing SCFA production, restoring the balance of gut microbiota, and suppressing respiratory inflammation. This study provides novel insights into the TCM theory of interconnection between the lung and large intestine.
8.Action Mechanism of Resolving Dampness and Phlegm of Pinelliae Rhizoma Praeparatum Based on Interconnection Between Lung and Large Intestine
Xingbao TAO ; Chentao ZHAO ; Xiaofu ZHU ; Hao WU ; Jun HE ; Weiguo CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):122-131
ObjectiveTo investigate the effects of Pinelliae Rhizoma Praeparatum (PRP) on lung tissue, gut microbiota, and short-chain fatty acid (SCFA) metabolism in a model of mice with cold fluid retention in the lung and explore its mechanism of action in resolving dampness and phlegm based on the interconnection between the lung and large intestine. MethodsFifty female ICR mice were randomly divided into a normal group, model group, positive control group (Xiaoqinglong granules, 6.5 g·kg-1), and high-dose and low-dose PRP decoction groups (3.0, 1.5 g·kg-1), with 10 mice in each group. A model of mice with cold fluid retention in the lung was established using ovalbumin (OVA) sensitization combined with cold-water immersion. Drug interventions were conducted from day 18 to day 33 for 15 consecutive days. The airway resistance value of the mice was measured using a non-invasive pulmonary function analyzer. Phlegm-resolving effects were evaluated via a microplate reader. Eosinophil and neutrophil counts in bronchoalveolar lavage fluid (BALF) were analyzed using an automated hematology analyzer. Serum levels of total immunoglobulin E (IgE), interferon-γ (IFN-γ), interleukin-4 (IL-4), and BALF levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were quantified by enzyme-linked immunosorbent assay (ELISA). Lung histopathology was assessed using hematoxylin-eosin (HE) staining. Immunohistochemistry (IHC) was employed to detect mucin 5AC (MUC5AC) and aquaporin 5 (AQP5) protein expression in lung tissue. Gut microbiota composition was analyzed via agarose gel electrophoresis, and fecal SCFA levels were measured by gas chromatography-mass spectrometry (GC-MS). ResultsCompared with the normal group, the model group exhibited significantly increased airway resistance value (RI) (P<0.05), elevated eosinophil and neutrophil counts and IL-6 and IL-8 levels in BALF (P<0.05), increased serum IgE and IL-4 levels (P<0.05), with reduced IFN-γ levels (P<0.05). It also showed thickened bronchial walls, widened alveolar septa, narrowed lumens, and mucus plugs in lung tissue, upregulated MUC5AC protein expression and downregulated AQP5 protein expression (P<0.05), decreased relative abundance of beneficial gut microbiota (Firmicutes, Clostridia, Clostridiales, Lactobacillaceae, and Lactobacillus), and increased abundance of harmful microbiota (Bacteroidetes, Bacteroidia, Bacteroidales, Muribaculaceae, and Muribaculum). In addition, the model group presented reduced fecal SCFA levels (acetate, propionate, and butyrate) (P<0.05). After the intervention of PRP decoction, compared to the model group, all drug administration groups showed decreased RI (P<0.05), increased phenol red excretion, declined eosinophil and neutrophil counts and IL-6, IL-8, IgE, and IL-4 levels (P<0.05), and improved IFN-γ levels (P<0.05) and lung pathology improved. The MUC5AC protein expression decreased (P<0.05), and the AQP5 protein expression increased (P<0.05). The disorder of gut microbiota was improved, and the diversity of gut microbiota was restored, with a significantly increased relative abundance ratio of beneficial microbiota (P<0.05) and a significantly reduced relative abundance ratio of harmful microbiota (P<0.05). The SCFA levels (acetate, propionate, and butyrate) increased (P<0.05). The efficacy indicators of serum inflammatory factors (IgE, IL-4, and IFN-γ), phlegm-resolving effect, airway resistance, total pathological score, and the protein expression of MUC5AC and AQP5 were correlated with gut microbiota and SCFAs. ConclusionPRP decoction alleviates cold-phlegm syndrome by modulating the gut-lung axis, promoting beneficial gut microbiota, enhancing SCFA production, restoring the balance of gut microbiota, and suppressing respiratory inflammation. This study provides novel insights into the TCM theory of interconnection between the lung and large intestine.
9.Cost-effectiveness of Fractional Flow Reserve Versus Intravascular Ultrasound to Guide Percutaneous Coronary Intervention: Results From the FLAVOUR Study
Doyeon HWANG ; Hea-Lim KIM ; Jane KO ; HyunJin CHOI ; Hanna JEONG ; Sun-ae JANG ; Xinyang HU ; Jeehoon KANG ; Jinlong ZHANG ; Jun JIANG ; Joo-Yong HAHN ; Chang-Wook NAM ; Joon-Hyung DOH ; Bong-Ki LEE ; Weon KIM ; Jinyu HUANG ; Fan JIANG ; Hao ZHOU ; Peng CHEN ; Lijiang TANG ; Wenbing JIANG ; Xiaomin CHEN ; Wenming HE ; Sung Gyun AHN ; Ung KIM ; You-Jeong KI ; Eun-Seok SHIN ; Hyo-Soo KIM ; Seung-Jea TAHK ; JianAn WANG ; Tae-Jin LEE ; Bon-Kwon KOO ;
Korean Circulation Journal 2025;55(1):34-46
Background and Objectives:
The Fractional Flow Reserve and Intravascular UltrasoundGuided Intervention Strategy for Clinical Outcomes in Patients with Intermediate Stenosis (FLAVOUR) trial demonstrated non-inferiority of fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) compared with intravascular ultrasound (IVUS)-guided PCI. We sought to investigate the cost-effectiveness of FFR-guided PCI compared to IVUS-guided PCI in Korea.
Methods:
A 2-part cost-effectiveness model, composed of a short-term decision tree model and a long-term Markov model, was developed for patients who underwent PCI to treat intermediate stenosis (40% to 70% stenosis by visual estimation on coronary angiography).The lifetime healthcare costs and quality-adjusted life-years (QALYs) were estimated from the healthcare system perspective. Transition probabilities were mainly referred from the FLAVOUR trial, and healthcare costs were mainly obtained through analysis of Korean National Health Insurance claims data. Health utilities were mainly obtained from the Seattle Angina Questionnaire responses of FLAVOUR trial participants mapped to EQ-5D.
Results:
From the Korean healthcare system perspective, the base-case analysis showed that FFR-guided PCI was 2,451 U.S. dollar lower in lifetime healthcare costs and 0.178 higher in QALYs compared to IVUS-guided PCI. FFR-guided PCI remained more likely to be cost-effective over a wide range of willingness-to-pay thresholds in the probabilistic sensitivity analysis.
Conclusions
Based on the results from the FLAVOUR trial, FFR-guided PCI is projected to decrease lifetime healthcare costs and increase QALYs compared with IVUS-guided PCI in intermediate coronary lesion, and it is a dominant strategy in Korea.
10.Cost-effectiveness of Fractional Flow Reserve Versus Intravascular Ultrasound to Guide Percutaneous Coronary Intervention: Results From the FLAVOUR Study
Doyeon HWANG ; Hea-Lim KIM ; Jane KO ; HyunJin CHOI ; Hanna JEONG ; Sun-ae JANG ; Xinyang HU ; Jeehoon KANG ; Jinlong ZHANG ; Jun JIANG ; Joo-Yong HAHN ; Chang-Wook NAM ; Joon-Hyung DOH ; Bong-Ki LEE ; Weon KIM ; Jinyu HUANG ; Fan JIANG ; Hao ZHOU ; Peng CHEN ; Lijiang TANG ; Wenbing JIANG ; Xiaomin CHEN ; Wenming HE ; Sung Gyun AHN ; Ung KIM ; You-Jeong KI ; Eun-Seok SHIN ; Hyo-Soo KIM ; Seung-Jea TAHK ; JianAn WANG ; Tae-Jin LEE ; Bon-Kwon KOO ;
Korean Circulation Journal 2025;55(1):34-46
Background and Objectives:
The Fractional Flow Reserve and Intravascular UltrasoundGuided Intervention Strategy for Clinical Outcomes in Patients with Intermediate Stenosis (FLAVOUR) trial demonstrated non-inferiority of fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) compared with intravascular ultrasound (IVUS)-guided PCI. We sought to investigate the cost-effectiveness of FFR-guided PCI compared to IVUS-guided PCI in Korea.
Methods:
A 2-part cost-effectiveness model, composed of a short-term decision tree model and a long-term Markov model, was developed for patients who underwent PCI to treat intermediate stenosis (40% to 70% stenosis by visual estimation on coronary angiography).The lifetime healthcare costs and quality-adjusted life-years (QALYs) were estimated from the healthcare system perspective. Transition probabilities were mainly referred from the FLAVOUR trial, and healthcare costs were mainly obtained through analysis of Korean National Health Insurance claims data. Health utilities were mainly obtained from the Seattle Angina Questionnaire responses of FLAVOUR trial participants mapped to EQ-5D.
Results:
From the Korean healthcare system perspective, the base-case analysis showed that FFR-guided PCI was 2,451 U.S. dollar lower in lifetime healthcare costs and 0.178 higher in QALYs compared to IVUS-guided PCI. FFR-guided PCI remained more likely to be cost-effective over a wide range of willingness-to-pay thresholds in the probabilistic sensitivity analysis.
Conclusions
Based on the results from the FLAVOUR trial, FFR-guided PCI is projected to decrease lifetime healthcare costs and increase QALYs compared with IVUS-guided PCI in intermediate coronary lesion, and it is a dominant strategy in Korea.


Result Analysis
Print
Save
E-mail