1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.Efficacy and safety of ruxolitinib in the treatment of myelofibrosis
Wanwan WANG ; Jun YE ; Hai CHENG ; Wei YAO ; Guiling LIU
China Pharmacy 2025;36(14):1781-1785
OBJECTIVE To explore the efficacy and safety of ruxolitinib in the treatment of myelofibrosis (MF). METHODS A retrospective collection of data was conducted on 42 MF patients who were treated with ruxolitinib in a standardized manner for more than 6 months in the Third People’s Hospital of Bengbu from September 2018 to April 2024. The clinical symptom scores, spleen size reduction, and MF grading of the patients before and after treatment were analyzed. Additionally, the occurrence of adverse reactions with a causality assessment result of “definite”“probable” or “possible” was recorded. The patients’ survival status was followed up. RESULTS After 6 months of treatment, both clinical symptom scores and the total score were significantly decreased than before treatment (P<0.05). The length and thickness of the spleen were significantly shorter than before treatment (P<0.05). MF classification in 5 patients decreased by 1 level compared with baseline, 1 case was level 2 and dropped to level 0, 14 patients remained stable. The main adverse reactions were anemia (26 cases), thrombocytopenia (14 cases), infection (11 cases), and gastrointestinal discomfort (9 cases). Thirty-nine patients survived, with a survival rate of 92.86%. CONCLUSIONS Ruxolitinib can effectively improve the clinical symptoms of patients with MF, shrink the spleen, stabilize and even improve MF grading, and holds promise for bringing long-term survival benefits to MF patients. Adverse reactions are mainly anemia, thrombocytopenia, infection and gastrointestinal discomfort.
4.Effect of modified Baduanjin exercise on cardiopulmonary function, motor function and activities of daily living for stroke patients
Junwen CHEN ; Qian CHEN ; Cheng CHEN ; Shuyue LI ; Lingling LIU ; Cunshu WU ; Xiang GONG ; Jun LU ; Guangxu XU
Chinese Journal of Rehabilitation Theory and Practice 2024;30(1):74-80
ObjectiveTo investigate the effect of modified Baduanjin exercise, as an rehabilitation exercise, on cardiopulmonary function, motor function and activities of daily living in patients with stroke. MethodsFrom January to September, 2023, 42 stroke patients in the Nanjing Qixia District Hospital were randomly divided into control group (n = 21) and experimental group (n = 21). The control group received routine rehabilitation, and the experimental group received modified Baduanjin exercise in addition, for four weeks. They were assessed with peak oxygen uptake (VO2peak), anaerobic threshold (AT), peak oxygen pulse (VO2peak/HR), forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), peak expiratory flow (PEF), Fugl-Meyer Assessment-upper extremities (FMA-UE), Berg Balance Scale (BBS) and modified Barthel Index (MBI) before and after intervention. ResultsVO2peak, AT, and the scores of FMA-UE, BBS and MBI improved in the control group after intervention (|t| > 2.256, |Z| > 2.936, P < 0.05); while VO2peak, AT, VO2peak/HR, FVC, FEV1, PEF, and the scores of FMA-UE, BBS and MBI improved in the experimental group (|t| > 4.390, |Z| > 3.451, P < 0.001); and all the indexes were better in the experimental group than in the control group (|t| > 4.136,|Z| > 2.751,P < 0.01), except the scores of BBS and MBI. ConclusionModified Baduanjin exercise can improve the cardiopulmonary function and upper limb motor function for stroke patients.
5.Estimation of genotoxicity threshold induced by acute exposure to neodymium nitrate in mice using benchmark dose
Junli LIU ; Yu DING ; Xueqing CHENG ; Zhengli YANG ; Kelei QIAN ; Jing XU ; Yiyun FAN ; Dongsheng YU ; Zhiqing ZHENG ; Jun YANG ; Ning WANG ; Xinyu HONG
Journal of Environmental and Occupational Medicine 2024;41(4):425-430
Background The benchmark dose (BMD) method calculates the dose associated with a specific change in response based on a specific dose-response relationship. Compared with the traditional no observed adverse effect level (NOAEL) method, the BMD method has many advantages, and the 95% lower confidence limit of benchmark dose lower limit (BMDL) is recommended to replace NOAEL in deriving biological exposure limits. No authority has yet published any health-based guideline for rare earth elements. Objective To evaluate genotoxicity threshold induced by acute exposure to neodymium nitrate in mice using BMD modeling through micronucleus test and comet assay. Methods SPF grade mice (n=90) were randomly divided into nine groups, including seven neodymium nitrate exposure groups, one control group (distilled water), and one positive control group (200 mg·kg−1 ethyl methanesulfonate), 10 mice in each group, half male and half female. The seven dose groups were fed by gavage with different concentrations of neodymium nitrate solution (male: 14, 27, 39, 55, 77, 109, and 219 mg·kg−1; female: 24, 49, 69, 97, 138, 195, and 389 mg·kg−1) twice at an interval of 21 h. Three hours after the last exposure, the animals were neutralized by cervical dislocation. The bone marrow of mice femur was taken to calculate the micronucleus rate of bone marrow cells, and the liver and stomach were taken for comet test. Results The best fitting models for the increase of polychromatophil micronucleus rate in bone marrow of female and male mice induced by neodymium nitrate were the exponential 4 model and the hill model, respectively. The BMD and the BMDL of female mice were calculated to be 31.37 mg·kg−1 and 21.90 mg·kg−1, and those of male mice were calculated to be 58.62 mg·kg−1 and 54.31 mg·kg−1, respectively. The best fitting models for DNA damage induced by neodymium nitrate in female and male mouse hepatocytes were the exponential 5 model and the exponential 4 model, respectively, and the calculated BMD and BMDL were 27.15 mg·kg−1 and 11.99 mg·kg−1 for female mice, and 16.28 mg·kg−1 and 10.47 mg·kg−1 for male mice, respectively. The hill model was the best fitting model for DNA damage of gastric adenocytes in both female and male mice, and the calculated BMD and BMDL were 36.73 mg·kg−1 and 19.92 mg·kg−1 for female mice, and 24.74 mg·kg−1 and 14.08 mg·kg−1 for male mice, respectively. Conclusion Taken the micronucleus rate of bone marrow cells, DNA damage of liver cells and gastric gland cells as the end points of genotoxicity, the BMDL of neodymium nitrate is 10.47 mg·kg−1, which can be used as the threshold of genotoxic effects induced by acute exposure to neodymium nitrate in mice.
6.A Sensor for Detection of Breast Tumor with Three-dimensional Electrical Impedance Tomography
Kai LIU ; An-Qi LI ; Fang LI ; Cheng-Jun ZHU ; Hang TIAN ; Jia-Feng YAO
Chinese Journal of Analytical Chemistry 2024;52(2):248-255,中插16-中插18
An intensive breast array sensor was designed based on three-dimensional electrical impedance tomography in this work.Firstly,an electrical impedance sensor for detection of breast cancer was developed.The sensor adopted the integrated design of excitation electrode array and ground electrode to achieve structural simplification.It realized electric field densification through conical matrix and double-layer circumferentially arranged electrode array and improved the detection accuracy of target object through taper optimization.Secondly,the imaging system was designed,and the sensor was optimized by numerical simulation.The simulation results showed that halving the number of electrodes did not affect imaging accuracy of the sensor,but could improve the imaging speed.Finally,the performance of the sensor was verified by experiment.The signal-to-noise ratio and channel consistency of the system were at a good level.The sensor was used to reconstruct three-dimensional image of the experimental model with relative volume of the detection field of 0.4%.The image correlation coefficient of the single target imaging was above 0.6 and the position of the double target object could be clearly identified,and thus the visual detection of breast cancer was realized.
7.Comparison of the predictive value of new simplified insulin resistance assessment indexes in identifying left ventricular subclinical dysfunction in T2DM patients
Yan-Yan CHEN ; Meng-Ying LI ; Jie ZHOU ; Jian-Fang FU ; Ying ZHANG ; Yi WANG ; Cheng WANG ; Xiang-Yang LIU ; Sheng-Jun TA ; Li-Wen LIU ; Ze-Ping LI ; Xiao-Miao LI
Medical Journal of Chinese People's Liberation Army 2024;49(2):137-143
Objective To investigate the predictive value of new simplified insulin resistance(IR)assessment indexes in identifying subclinical left ventricular systolic function impairment in patients with type 2 diabetes mellitus(T2DM).Methods A total of 150 T2DM patients with preserved left ventricular ejection fraction(LVEF≥50%)who were admitted to Department of Endocrinology of the First Affiliated Hospital of Air Force Medical University from June 2021 to December 2021 were retrospectively analyzed.All patients underwent two-dimensional speckle tracking echocardiography to measure left ventricular global longitudinal strain(GLS).According to GLS value,the subjects were divided into the normal group(GLS≥18%group,n=80)and the impaired group(GLS<18%group,n=70).Some new simplified IR assessment indicators were calculated and compared between the two groups,including body mass index(BMI),TG/HDL-C ratio,triglyceride-glucose(TyG)index,TyG-BMI index,TyG-WHR and metabolic score for IR(METS-IR).Correlation between the GLS and the new simplified IR assessment indexes was analyzed.The receiver operating characteristic(ROC)curve was used to analyze the diagnostic efficacy of different simplified IR assessment indexes,with the area under the curve(AUC)calculated.Furthermore,according to whether the subjects were complicated with hypertension,binary logistics regression analysis was performed to explore the independent correlation between the simplified IR assessment index and GLS<18%.Results Total 150 were included with aged(54.5±13.7)years with 96(64.0%)men and 54(36.0%)women.Compared with the GLS≥18%group,the TG/HDL-C ratio,TyG index,TyG-BMI,and METS-IR of subjects in the GLS<18%group were significantly increased(P<0.05).Pearson correlation analysis showed that TG/HDL-C ratio,TyG index,TyG-BMI,TyG-WHR,and METS-IR were negatively correlated with GLS(P<0.05).ROC analysis showed that TyG index had a certain predictive value for the evaluation of GLS<18%(AUC=0.678,95%CI 0.591-0.765,P<0.001).Stratification based on hypertension and further adjusting for confounding factors,TyG index remains significantly associated with GLS<18%(OR=3.249,95%CI 1.045-10.103,P=0.042).Conclusions The novel simplified insulin resistance evaluation indexes are closely associated with left ventricular subclinical systolic dysfunction in T2DM patients with preserved ejection fraction.TyG index is an effective index to identify left ventricular subclinical dysfunction in these populations.
8.A proteomic landscape of pharmacologic perturbations for functional relevance
Zhiwei LIU ; Shangwen JIANG ; Bingbing HAO ; Shuyu XIE ; Yingluo LIU ; Yuqi HUANG ; Heng XU ; Cheng LUO ; Min HUANG ; Minjia TAN ; Jun-Yu XU
Journal of Pharmaceutical Analysis 2024;14(1):128-139
Pharmacological perturbation studies based on protein-level signatures are fundamental for drug dis-covery.In the present study,we used a mass spectrometry(MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds.The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells.Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol,as well as the noncanonical targets of clinically approved tamoxifen,lovastatin,and their derivatives.Furthermore,the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints.This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.
9.Effects of miR-4531/CX3CL1 signaling pathway on the vascular injury in preeclampsia in vitro
Man WANG ; Jun LI ; Hang LI ; Qing SONG ; Yan LIU ; Haili WANG ; Xiao WANG ; Qunxian CHENG ; Zheng HU ; Ling XU
Chinese Journal of Clinical Medicine 2024;31(6):868-874
Objective To investigate the effects of miR-
10.Association between the ratio of dietary vitamin A to body weight and hypertension in children
Chinese Journal of School Health 2024;45(2):267-272
Objective:
To explore the relationship between the ratio of dietary vitamin A (VitA) to body weight and hypertension among children, so as to provide a reference for blood pressure control through dietary nutritional interventions and childhood hypertension prevention.
Methods:
Utilizing the baseline survey and followup sample data from the Healthy Children Cohort established in urban and rural areas of Chongqing from 2014 to 2019, structured quantitative dietary questionnaire and selfdesigned questionnaire were used to investigate the information of dietary intake and socioeconomic characteristics of 15 279 children, as well as blood pressure, height, weight measurement. The ratio of dietary VitA to body weight was divided into four groups based on quartiles [≤P25(Q1), >P25~P50(Q2), >P50~P75(Q3), >P75(Q4)]. Generalized linear regression models and Logistic regression models were used to analyze the correlation between ratio of dietary VitA to body weight with blood pressure levels and prevalence of hypertension.
Results:
The results of the 2014 baseline survey indicated that, after adjusting for confounding factors such as demographic indicators and nutritional intake, significant differences were observed in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) among different groups categorized by the ratio of dietary VitA to body weight (F=157.57, 44.71, 95.92, P<0.01). The baseline ratio of dietary VitA to body weight in children exhibited a negative correlation with DBP, SBP and MAP at baseline and in 2019[baseline: β(95%CI)=-0.65(-0.89--0.42), -0.22(-0.42--0.01), -0.36(-0.56--0.16); 2019: β(95%CI)=-0.77(-1.34--0.19), -0.62(-1.21--0.02), -0.77(-1.34--0.19), P<0.05]. Compared to Q1 group, the risk of hypertension decreased among children in Q4 at baseline and followup in 2019 [OR(95%CI)=0.63(0.49-0.81), 0.18(0.08-0.42), P<0.01].
Conclusions
The ratio of dietary VitA to body weight is significantly negatively correlated with blood pressure levels among children, and dietary VitA deficiency is an independent risk factor for hypertension among children. Measures should be taken to actively adjust childrens dietary nutrition and reduce the risk of childhood hypertension.


Result Analysis
Print
Save
E-mail