1.Effects and mechanism of osthol on skin wound healing and angiogenesis in rats
Xiyan FEI ; Dan WANG ; Juan JIANG ; Xinfang HE ; Enjing ZHANG ; Shuqi FEI
China Pharmacy 2025;36(3):324-329
		                        		
		                        			
		                        			OBJECTIVE To investigate the effects of osthole (OST) on skin wound healing and angiogenesis in rats by regulating the sonic hedgehog (SHH) signaling pathway. METHODS Full-layer skin defect wound model rats were established and then randomly separated into Model group, OST low-dose, medium-dose and high-dose groups (OST-L group, OST-M group, OST-H group, 20, 30, 40 mg/kg OST), high-dose OST+SHH inhibitor cyclopamide group (OST-H+cyclopamide group, 40 mg/kg OST+10 mg/kg cyclopamide), with 12 rats in each group. Another 12 rats were selected as the control group. The wound healing of rats on 1, 7 and 14 days of administration was observed, and the wound healing rate of rats in each group was measured. The pathological changes and collagen deposition in rat wound tissue were observed; the levels of angiopoietin-1 (Ang-1) and basic fibroblast growth factor (bFGF) in wound tissue of rats were detected; the relative expressions of vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptor-2 (VEGFR-2) mRNA were also detected in wound tissue of rats; the protein expressions of VEGFA, VEGFR-2, SHH and glioma-associated oncogene homolog-1 (GLI1) were determined in wound tissue of rats. RESULTS Compared with Model group, the healing rate of skin wound, relative expression of collagen protein, the levels of Ang-1 and bFGF, the mRNA and protein expressions of VEGFA and VEGFR-2, and the protein expressions of SHH and GLI1 were all significantly increased in OST-M and OST-H groups (P<0.05). The wound tissue underwent significant re- epithelialization, with reduced inflammatory cell infiltration and granulation tissue edema, and an increase in the number of new blood vessels. SHH inhibitor cycloparamide weakened the promoting effects of OST on skin wound healing and angiogenesis in rats. CONCLUSIONS OST may promote skin wound healing and angiogenesis in rats by activating the SHH signaling pathway.
		                        		
		                        		
		                        		
		                        	
2.Advances in inflammatory response mechanism and anti-inflammatory treatment with dry eye disease
Pingping WANG ; Fan JIANG ; Simin LI ; Dongxia YAN ; Juan CHENG
International Eye Science 2025;25(3):440-445
		                        		
		                        			
		                        			 In recent years, the incidence of dry eye disease(DED)is increasing, positioning it as one of the most prevalent diseases affecting the ocular surface. Inflammatory response is the pathological basis of DED, involving various inflammatory mediators and inflammatory signaling pathways. Consequently, anti-inflammatory treatment emerges as a fundamental strategy for preventing and managing DED. This review summarizes the classic inflammatory factors involved in the development and progression of DED, including interleukins, tumor necrosis factor, matrix metalloproteinases, chemokines, and cell adhesion molecules. It also discusses the relevant inflammatory signaling pathways: the MAPKs pathway, NF-κB pathway, Wnt pathway and TLR pathway. Additionally, this review addresses the mechanisms of action and alterations in relevant biomarkers associated with current first-line recommended anti-inflammatory therapies, including corticosteroids, immunosuppressants, nonsteroidal anti-inflammatory drugs, and traditional Chinese medicine approaches to inflammation management. This comprehensive overview aims to enhance understanding of the inflammatory mechanisms underlying DED while exploring future therapeutic prospects. 
		                        		
		                        		
		                        		
		                        	
3.Advances in inflammatory response mechanism and anti-inflammatory treatment with dry eye disease
Pingping WANG ; Fan JIANG ; Simin LI ; Dongxia YAN ; Juan CHENG
International Eye Science 2025;25(3):440-445
		                        		
		                        			
		                        			 In recent years, the incidence of dry eye disease(DED)is increasing, positioning it as one of the most prevalent diseases affecting the ocular surface. Inflammatory response is the pathological basis of DED, involving various inflammatory mediators and inflammatory signaling pathways. Consequently, anti-inflammatory treatment emerges as a fundamental strategy for preventing and managing DED. This review summarizes the classic inflammatory factors involved in the development and progression of DED, including interleukins, tumor necrosis factor, matrix metalloproteinases, chemokines, and cell adhesion molecules. It also discusses the relevant inflammatory signaling pathways: the MAPKs pathway, NF-κB pathway, Wnt pathway and TLR pathway. Additionally, this review addresses the mechanisms of action and alterations in relevant biomarkers associated with current first-line recommended anti-inflammatory therapies, including corticosteroids, immunosuppressants, nonsteroidal anti-inflammatory drugs, and traditional Chinese medicine approaches to inflammation management. This comprehensive overview aims to enhance understanding of the inflammatory mechanisms underlying DED while exploring future therapeutic prospects. 
		                        		
		                        		
		                        		
		                        	
4.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
		                        		
		                        			
		                        			Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future. 
		                        		
		                        		
		                        		
		                        	
5.Working practices in eliminating the public health crisis caused by viral hepatitis in Hainan Province of China
Weihua LI ; Changfu XIONG ; Taifan CHEN ; Bin HE ; Dapeng YIN ; Xuexia ZENG ; Feng LIN ; Biyu CHEN ; Xiaomei ZENG ; Biao WU ; Juan JIANG ; Lu ZHONG ; Yuhui ZHANG
Journal of Clinical Hepatology 2025;41(2):228-233
		                        		
		                        			
		                        			In 2022, Hainan provincial government launched the project for the prevention and control of viral hepatitis with the goals of a hepatitis B screening rate of 90%, a diagnostic rate of 90%, and a treatment rate of 80% among people aged 18 years and above by the year 2025, and the main intervention measures include population-based prevention, case screening, antiviral therapy, and health management. As of December 31, 2024, a total of 6.875 million individuals in the general population had been screened for hepatitis B, with a screening rate of 95.6%. A total of 184 710 individuals with positive HBsAg were identified, among whom 156 772 were diagnosed through serological reexamination, resulting in a diagnostic rate of 84.9%. A total of 50 742 patients with chronic hepatitis B were identified, among whom 42 921 had hepatitis B-specific health records established for health management, with a file establishment rate of 84.6%. A total of 31 553 individuals received antiviral therapy, with a treatment rate of 62.2%. A total of 2.503 million individuals at a high risk of hepatitis C were screened, among whom 4 870 tested positive for HCV antibody and 3 858 underwent HCV RNA testing, resulting in a diagnostic rate of 79.2%, and 1 824 individuals with positive HCV RNA were identified, among whom 1 194 received antiviral therapy, with a treatment rate of 65.5%. In addition, 159 301 individuals with negative HBsAg and anti-HBs and an age of 20 — 40 years were inoculated with hepatitis B vaccine free of charge. Through the implementation of the project for the prevention and control of viral hepatitis, a large number of hepatitis patients have been identified, treated, and managed in the province within a short period of time, which significantly accelerates the efforts to eliminate the crisis of viral hepatitis. 
		                        		
		                        		
		                        		
		                        	
6.Research progress of natural bioactive products in resisting loss of skin collagen
Chu-juan HU ; Lu-lu WANG ; Jian-dong JIANG ; Rui LI
Acta Pharmaceutica Sinica 2025;60(2):269-279
		                        		
		                        			
		                        			 As the biggest tissue of human body, skin is the first barrier of resisting external aggression. Collagen is one of important parts of the skin, which could not only affect the aesthetics of skin, but also influence the health and normal function of skin. It is the great significance to find ways that could inhibit the loss of collagen. The mechanisms of the collagen degradation in skin are complex and multifaceted. Natural bioactive products have unique advantages in treating the loss of collagen, which have multi-targets and mechanisms. In this review, the mechanisms of skin collagen degradation are discussed, and the research progress of natural bioactive products in resisting skin aging through promoting collagen synthesis are reviewed, in order to provide references for futural research. 
		                        		
		                        		
		                        		
		                        	
7.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
		                        		
		                        			
		                        			 Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice. 
		                        		
		                        		
		                        		
		                        	
8.Buzhong Yiqitang Regulates Mitochondrial Homeostasis of Skeletal Muscle via PINK1 Pathways to Resist Exercise-induced Fatigue
Huani WEI ; Ting JIANG ; Juan PENG ; Chunxiang JING ; Wei LIU ; Huashan PAN ; Daorui CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):31-39
		                        		
		                        			
		                        			ObjectiveTo explore the effect of Buzhong Yiqitang on exercise-induced fatigue and its potential mechanism. MethodsSixty male SPF-grade C57BL/6J mice were randomized into blank, model, low-, medium-, high-dose (4.1, 8.2, 16.4 g·kg-1, respectively) Buzhong Yiqitang, and vitamin C (0.04 g·kg-1) groups. The blank and model groups were administrated with normal saline. Each group was administrated with corresponding agents by gavage at a dose of 0.2 mL once a day. Except the blank group, other groups underwent a 6-weeks exhaustive swimming test under negative gravity. At the end of the experiment, blood was collected, and the thymus, spleen, liver, and kidney weights were measured. Serum levels of lactic acid (LD), blood urea nitrogen (BUN), creatine kinase (CK), and malondialdehyde (MDA) were assessed by kits to evaluate fatigue. Hematoxylin-eosin staining was performed to observe pathological changes in the skeletal muscle. Electron microscopy was used to examine the skeletal muscle cell ultrastructure, with a focus on mitochondrial morphological changes. The adenosine triphosphate (ATP) content and activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, and Ⅴ in skeletal muscle were determined by kits. The expression levels of key genes and proteins in the PTEN-induced putative kinase 1 (PINK1)-mediated mitochondrial homeostasis pathways in the skeletal muscle were evaluated via Real-time PCR and Western blot, respectively. ResultsCompared with the blank group, the model group showed reductions in weight gain rate (P<0.01) and thymus index (P<0.01), rises in serum levels of LD, BUN, MDA, and CK (P<0.01), disarrangement of skeletal muscle, broken muscle fibers, inflammatory cell infiltration in muscle fiber gaps, abnormal morphological changes (increased vacuolated mitochondria and disappearance of cristae) of mitochondria in skeletal muscle cells, and decreased mitochondria. In addition, the skeletal muscle in the model group showed reduced content of ATP, weakened activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, and Ⅴ (P<0.05), up-regulated mRNA levels of PINK1, E3 ubiquitin-protein ligase (Parkin), hairy/enhancer-of-split related with YRPW motif 1 (HEY1), dynamin-related protein 1 (Drp1), sequestosome 1 (p62), and hypoxia-inducible factor 1 alpha (HIF-1α) (P<0.05), and down-regulated protein level of microtubule-associated protein 1-light chain 3B (LC3B) (P<0.01). Compared with the model group, Buzhong Yiqitang prolonged the swimming exhaustion time (P<0.01), increased the weight gain rate (P<0.01) and thymus index (P<0.01), lowered the serum levels of LD, BUN, MDA, and CK (P<0.05, P<0.01). The skeletal muscle in the Buzhong Yiqitang groups showed neat arrangement, reduced inflammatory cells, intact mitochondria with dense cristae, and increased mitochondria. In addition, the skeletal muscle in the Buzhong Yiqitang groups showcased increased ATP content, enhanced activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, and Ⅴ (P<0.05, P<0.01), up-regulated protein levels of PINK1, Parkin, HEY1, LC3B, and Drp1 and mRNA level of HIF-1α (P<0.05, P<0.01), and down-regulated expression level of p62 (P<0.05, P<0.01). ConclusionBuzhong Yiqitang can prevent and treat exercise-induced fatigue by regulating the mitochondrial homeostasis of skeletal muscle via the HIF-1α/PINK1/Parkin and HIF-1α/HEY1/PINK1 signaling pathways. 
		                        		
		                        		
		                        		
		                        	
9.Buzhong Yiqitang Regulates Mitochondrial Homeostasis of Skeletal Muscle via PINK1 Pathways to Resist Exercise-induced Fatigue
Huani WEI ; Ting JIANG ; Juan PENG ; Chunxiang JING ; Wei LIU ; Huashan PAN ; Daorui CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):31-39
		                        		
		                        			
		                        			ObjectiveTo explore the effect of Buzhong Yiqitang on exercise-induced fatigue and its potential mechanism. MethodsSixty male SPF-grade C57BL/6J mice were randomized into blank, model, low-, medium-, high-dose (4.1, 8.2, 16.4 g·kg-1, respectively) Buzhong Yiqitang, and vitamin C (0.04 g·kg-1) groups. The blank and model groups were administrated with normal saline. Each group was administrated with corresponding agents by gavage at a dose of 0.2 mL once a day. Except the blank group, other groups underwent a 6-weeks exhaustive swimming test under negative gravity. At the end of the experiment, blood was collected, and the thymus, spleen, liver, and kidney weights were measured. Serum levels of lactic acid (LD), blood urea nitrogen (BUN), creatine kinase (CK), and malondialdehyde (MDA) were assessed by kits to evaluate fatigue. Hematoxylin-eosin staining was performed to observe pathological changes in the skeletal muscle. Electron microscopy was used to examine the skeletal muscle cell ultrastructure, with a focus on mitochondrial morphological changes. The adenosine triphosphate (ATP) content and activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, and Ⅴ in skeletal muscle were determined by kits. The expression levels of key genes and proteins in the PTEN-induced putative kinase 1 (PINK1)-mediated mitochondrial homeostasis pathways in the skeletal muscle were evaluated via Real-time PCR and Western blot, respectively. ResultsCompared with the blank group, the model group showed reductions in weight gain rate (P<0.01) and thymus index (P<0.01), rises in serum levels of LD, BUN, MDA, and CK (P<0.01), disarrangement of skeletal muscle, broken muscle fibers, inflammatory cell infiltration in muscle fiber gaps, abnormal morphological changes (increased vacuolated mitochondria and disappearance of cristae) of mitochondria in skeletal muscle cells, and decreased mitochondria. In addition, the skeletal muscle in the model group showed reduced content of ATP, weakened activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, and Ⅴ (P<0.05), up-regulated mRNA levels of PINK1, E3 ubiquitin-protein ligase (Parkin), hairy/enhancer-of-split related with YRPW motif 1 (HEY1), dynamin-related protein 1 (Drp1), sequestosome 1 (p62), and hypoxia-inducible factor 1 alpha (HIF-1α) (P<0.05), and down-regulated protein level of microtubule-associated protein 1-light chain 3B (LC3B) (P<0.01). Compared with the model group, Buzhong Yiqitang prolonged the swimming exhaustion time (P<0.01), increased the weight gain rate (P<0.01) and thymus index (P<0.01), lowered the serum levels of LD, BUN, MDA, and CK (P<0.05, P<0.01). The skeletal muscle in the Buzhong Yiqitang groups showed neat arrangement, reduced inflammatory cells, intact mitochondria with dense cristae, and increased mitochondria. In addition, the skeletal muscle in the Buzhong Yiqitang groups showcased increased ATP content, enhanced activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, and Ⅴ (P<0.05, P<0.01), up-regulated protein levels of PINK1, Parkin, HEY1, LC3B, and Drp1 and mRNA level of HIF-1α (P<0.05, P<0.01), and down-regulated expression level of p62 (P<0.05, P<0.01). ConclusionBuzhong Yiqitang can prevent and treat exercise-induced fatigue by regulating the mitochondrial homeostasis of skeletal muscle via the HIF-1α/PINK1/Parkin and HIF-1α/HEY1/PINK1 signaling pathways. 
		                        		
		                        		
		                        		
		                        	
10.Role of noninvasive tests in the prognostication of metabolic dysfunction-associated steatotic liver disease
Yue WANG ; Sherlot Juan SONG ; Yichong JIANG ; Jimmy Che-To LAI ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2025;31(Suppl):S51-S75
		                        		
		                        			
		                        			 In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail