1.Analysis and evaluation of platelet bank establishment strategy from the perspective of donor loss
Zheng LIU ; Yamin SUN ; Xin PENG ; Yiqing KANG ; Ziqing WANG ; Jintong ZHU ; Juan DU ; Jianbin LI
Chinese Journal of Blood Transfusion 2025;38(2):238-243
[Objective] To analyze the loss rate of platelet donors and evaluate the strategies for establishing a platelet donor bank. [Methods] A total of 1 443 donors who joined the HLA and HPA gene donor bank for platelets in Henan Province from 2018 to 2020 were included in this study. Data on the total number of apheresis platelet donations, annual donation frequency, age at enrollment, donation habits (including the number of platelets donated per session and whether they had previously donated whole blood), and enrollment location were collected from the platelet donor information management system. Donor loss was determined based on the date of their last donation. The loss rates of different groups under various conditions were compared to assess the enrollment strategies. [Results] By the time the platelet bank was officially operational in 2022, 421 donors had been lost, resulting in an loss rate of 29% (421/1 443). By the end of 2023, the overall cumulative loss rate reached 52% (746/1 443). The loss rate was lower than the overall level in groups meeting any of the following conditions: total apheresis platelet donations exceeding 50, annual donation frequency of 10 or more, age at enrollment of 40 years or older, donation of more than a single therapeutic dose per session, or a history of whole blood donation two or more times. Additionally, loss rates varied across different enrollment locations, with higher enrollment numbers generally associated with higher loss rates. [Conclusion] Through a comprehensive analysis of donor loss, our center has adjusted its strategies for establishing the donor pool. These findings also provide valuable insights for other blood collection and supply institutions in building platelet donor banks.
2.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
3.Sema3A secreted by sensory nerve induces bone formation under mechanical loads.
Hongxiang MEI ; Zhengzheng LI ; Qinyi LV ; Xingjian LI ; Yumeng WU ; Qingchen FENG ; Zhishen JIANG ; Yimei ZHOU ; Yule ZHENG ; Ziqi GAO ; Jiawei ZHOU ; Chen JIANG ; Shishu HUANG ; Juan LI
International Journal of Oral Science 2024;16(1):5-5
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
Humans
;
Bone Remodeling
;
Cell Differentiation
;
Osteogenesis
;
Semaphorin-3A/pharmacology*
;
Trigeminal Ganglion/metabolism*
4.Construction of nursing quality evaluation index system for pediatric orthopedics
Nan WANG ; Wei JIN ; Yanzhen HU ; Jie HUANG ; Dan ZHAO ; Juan XING ; Changhong LI ; Yanan HU ; Yi LIU ; Xuemei LU ; Zheng YANG
Chinese Journal of Practical Nursing 2024;40(9):655-664
Objective:To construct a representative index system for evaluating pediatric orthopedic nursing quality, providing a basis for hospital pediatric orthopedic nursing quality assessment and monitoring.Methods:From April to July 2023, using the "structure-process-outcome" three-dimensional quality structure model as the theoretical framework, a literature review was conducted, and an item pool was formulated. Through two rounds of Delphi method expert consultations, the hierarchical analysis method was finally employed to determine the indicators and their weights at each level.Results:The effective recovery rates of the questionnaire of the two rounds of expert consultations were 100% (20/20), the authority coefficients of experts were 0.87 and 0.88, the coefficients of variation were 0.00 to 0.27 and 0.00 to 0.24. The Kendell harmony coefficients of the second and third indicators in the two rounds of inquiry were 0.140, 0.166 and 0.192, 0.161(all P<0.05). The final pediatric orthopedic nursing quality evaluation index system included 3 primary indicators, 21 secondary indicators and 83 tertiary indicators. Among the primary indicators, the weight of process quality was the highest at 0.493 4, followed by outcome quality at 0.310 8, and the lowest was structural quality at 0.195 8. In the secondary indicators, "assessment criteria of limb blood circulation" had the highest weight at 0.099 8. Conclusions:The constructed pediatric orthopedic nursing quality evaluation index system covers key aspects and is more operationally feasible. It provides better guidance for nursing interventions and quality control.
5.Establishment of a safe disposal management program for home used sharp wastes from insulin injection among diabetic patients
Wenjie ZHANG ; Haiying ZHU ; Juan GE ; Yuqin HAN ; Limei ZHENG ; Ruihong LI
Modern Clinical Nursing 2024;23(1):70-77
Objective To establish a safe disposal management program for home used sharps waste of insulin injection so as to provide a reference for the standardised management of sharps waste after insulin.injection.Methods Based on the model of information-motivation-behavioural skills,the safe disposal management program for insulin needles used at home was developed by literature reviews and semi-structured interviews to investigate the perceptions and requirements of patients.The program was then modified and refined by two rounds of expert consultation with Delphi method.Results The effective retrieval rates of questionnaire for two rounds of expert consultations were 88.89%and 93.75%,with an expert authority coefficient at 0.93.In the second round,the mean importance scores of the items were 4.40 to 5.00,with a coefficient of variation ranged from 0 to 0.168.The established program consisted of three primary items,six secondary items,and 20 tertiary items.Conclusion The safe disposal management program for home used sharps waste of insulin injection established from the perspectives of information,motivation and behavioural skills was scientific and practical,which offered a guidance to healthcare professionals in the clinical practices.
6. Expression and distribution of brain⁃derived neurotrophic factor in different cerebrum regions of yak and cattle
Li-Ping ZHENG ; Xiao-Hua DU ; Ya-Juan WU ; Shan-Shan LIU ; Xia LIU
Acta Anatomica Sinica 2024;55(1):10-16
Objective To clarify the expression and distribution of brain⁃derived neurotrophic factor (BDNF) in the cerebrum of plateau yaks and cattle, and to explore the relationship between BDNF function and the adaptability of altitude hypoxia. Methods Five yaks and five cattles were selected.The content and distribution of BDNF in frontal lobe, temporal lobe, parietal lobe, occipital lobe, cerebrum white matter and hippocampus of yak and cattle were analyzed by Real⁃time PCR, Western blotting and Immunohistochemistry. Results Real⁃time PCR result showed that BDNF mRNA expression in the cerebrum of yaks and cattles was highest in temporal cortex, followed by hippocampus, parietal cortex, occipital cortex and frontal cortex, and lowest in white matter. Western blotting results showed that the content of BDNF protein in the cerebrum of yaks was the highest in temporal cortex,followed by hippocampus. The content of BDNF protein in other tissues was parietal cortex, frontal cortex and cerebrum white matter, and the content of BDNF protein was the lowest in occipital cortex. The content of BDNF protein intlecerebrum of cattles was the highest in the temporal cortex, followed by the hippocampus. The content of BDNF protein in other tissues was parietal cortex, occipital cortex and frontal cortex in descending order, and the protein content in cerebrum white matter was the lowest. Immunohistochemical results showed that the positive expression of BDNF protein in the cerebrum of yaks and cattles was basically similar, mainly distributed in the granulosa cells and glial cells in the frontal cortex, temporal cortex, parietal cortex and occipital cortex, glial cells in cerebrum white matter, pyramidal cell layer and polyform cell layer in the hippocampus. There was the small amount of distribution in Martinotti cells and the molecular layer of hippocampus in the cerebral cortex. Conclusion BDNF mRNA and protein are distributed and expressed in different brain regions of yaks and cattles, but the expression level different, which is speculated to be closely related to the specific functions of different cerebrum regions. The expression level of the cerebrum of yak is higher than that of cattle except occipital cortex, suggesting that it is related to the altitude hypoxic environment. BDNF may play an important role in enhancing hypoxic tolerance and protecting internal environmental homeostasis in the process of animal adaptation to hypoxic environment.
7.Population pharmacokinetics of mycophenolic acid in pediatric patients with primary IgA nephropathy
Juan CHEN ; Yanping GUAN ; Liangzhong SUN ; Yilei LI ; Haixia WEI ; Shouning ZHOU ; Yan CHEN ; Ping ZHENG
China Pharmacy 2024;35(1):69-74
OBJECTIVE To develop a population pharmacokinetic (PPK) model for mycophenolate mofetil active metabolite mycophenolic acid (MPA) in children with primary IgA nephropathy, explore the factors affecting the pharmacokinetic parameters of MPA, and provide a basis for clinical individualized therapy. METHODS Retrospective collection was conducted on 636 concentrations and clinical data from 47 pediatric patients with primary IgA nephropathy. PPK analysis was carried out by using the nonlinear mixed-effects model; the covariates were tested with a stepwise method. Goodness-of-fit plots, Bootstrap and visual predictive check were employed to evaluate the final model. RESULTS The pharmacokinetics of MPA in children with IgA nephropathy in vivo conformed to the first-order absorption and elimination two-compartment model (objective function value of 3 276.31). Covariate analysis suggested that body weight and albumin (ALB) levels were significant influencing factors on apparent clearance rate and apparent distribution volume. The typical values of PPK parameters of MPA in the final model were as follows: the central room had a distributed volume of 5.79 L, the clearance rate was 4.06 L/h, the volume of peripheral ventricular distribution was 430.93 L, the clearance rate between compartments was 15.40 L/h, the oral absorption rate constant was 1.29 h-1. After verification, most of the predicted corrected observed concentration points were within the 90% confidence interval of the predicted corrected simulated concentration, indicating that the MPA final model had good predictive performance. CONCLUSIONS The PPK model of MPA in children with primary IgA nephropathy is established in this study, identifying body weight and ALB levels are significant factors affecting MPA metabolism.
8.Pomalidomide improves airway inflammation and mucus hypersecretion in COPD rats by inhibiting TNF-α/NF-κB signaling pathway
Shu-Juan LIU ; Ya LI ; Zheng-Yuan FAN ; Gao-Feng LI ; Su-Yun LI
Medical Journal of Chinese People's Liberation Army 2024;49(1):91-98
Objective To investigate the effect and mechanism of pomalidomide(POM)on airway inflammation and mucus hypersecretion in rats with chronic obstructive pulmonary disease(COPD).Methods Thirty-six SD rats were randomly divided into control group,model group and POM group,with 12 in each group,half male and half female.The COPD model was established by smoke exposure combined with Klebsiella pneumoniae infection in model group and POM group.The rats in POM group were treated with POM(0.5 mg/kg,once a day for 1 week).The lung function,lung tissue pathology,the proportion of inflammatory cells in bronchoalveolar lavage fluid(BALF)and the levels of serum inflammatory factors tumor necrosis factor-α(TNF-α),interleukin(IL)-1β,IL-6 and IL-13 were observed and detected in each group.AB-PAS staining and immunohistochemistry were used to analyze the proliferation of goblet cells and the secretion of mucin(MUC)5AC and MUC5B in airway epithelium of rats.The expression levels of TNF-α receptor 1(TNFR1),IκB kinase(IKK),phosphorylated IKK(p-IKK)and P65 protein in lung tissue were detected by Western blotting.Results Compared with control group,model group showed significant decreased of tidal volume(TV),minute ventilation(MV),forced expiratory vital capacity(FVC),0.1s forced expiratory volume(FEV0.1)and 0.3 s forced expiratory volume(FEV0.3)(P<0.05),increased of the mean linear intercept(MLI)of the alveoli(P<0.01),decreased of the mean alveolar number(MAN)(P<0.01),increased of the proportion of neutrophils and lymphocytes in BALF sediment(P<0.05),and decreased of the proportion of macrophages in BALF sediment(P<0.01);increased of the levels of serum inflammatory factors TNF-α,IL-1β,IL-13 and IL-6(P<0.05),the proportion of goblet cells in airway epithelium(P<0.01),the secretion of MUC5AC and MUC5B in lung tissue(P<0.01),the content of TNFR1 and the ratio of p-IKK/IKK(P<0.01),the content of P65 in nucleus(P<0.01);and decreased of the content of P65 in cytoplasm(P<0.05).Compared with model group,after one week of POM treatment,POM group showed significant improved of the TV,MV,FVC,FEV0.1,FEV0.3,MLI and MAN of rats(P<0.05);decreased of the proportion of neutrophils and lymphocytes in BALF(P<0.05);increased of the proportion of macrophages(P<0.01);decreased of the levels of serum TNF-α,IL-1β,IL-6 and IL-13(P<0.05),the proportion of goblet cells in airway(P<0.01),the secretion of MUC5AC and MUC5B(P<0.01),and the expression of TNFR1,P-IKK and P65(nucleus)(P<0.05);and increased of the level of P65(cytoplasm)(P<0.01).Conclusions POM can improve airway inflammation and mucus hypersecretion in COPD rats,which may be achieved by inhibiting TNF-α/NF-κB signaling pathway.
9.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
10.The Research Status of Novel Coronavirus Antibodies and Small Molecule Inhibitors
Xin WU ; Han-Jie YU ; Xiao-Juan BAO ; Yu-Zi WANG ; Zheng LI
Progress in Biochemistry and Biophysics 2024;51(4):754-771
The World Health Organization has declared that the outbreak of coronavirus disease 2019(COVID-19) is a global pandemic. As mutations occurred in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the global epidemic still needs further concern. Worryingly, the effectiveness and neutralizing activity of existing antibodies and vaccines against SARS-CoV-2 variants is declining. There is an urgent need to find an effective antiviral medication with broad-spectrum inhibitory effects on novel coronavirus mutant strains against the SARS-CoV-2 infection. Neutralizing antibodies play an important role in the prevention and treatment of COVID-19. The interaction of spike-receptor-binding domain (Spike-RBD) of SARS-CoV-2 and human angiotensin-converting enzyme 2 (ACE2) is the first and critical step of SARS-CoV-2 infection. Hence, the SARS-CoV-2 Spike-RBD is a hot target for neutralizing antibodies development. Evusheld, the combination of Tixagevimab and Cilgavimab monoclonal antibodies (mAbs) targeting Spike-RBD exhibits neutralizing activity against BA.2.12.1, BA.4 and BA.5, which could be used as pre-exposure prophylaxis against SARS-CoV-2 infection. The nucleocapsid (N) protein is a conservative and high-abundance structural protein of SARS-CoV-2. The nCoV396 monoclonal antibody, isolated from the blood of convalescent COVID-19 patients against the N protein of SARS-CoV-2. This mAb not only showed neutralizing activity but also inhibits hyperactivation of complement and lung injury induced by N protein. The mAb 3E8 targeting ACE2 showed broadly neutralizing activity against SARS-CoV-2 and D614G, B.1.1.7, B.1.351, B.1.617.1 and P.1 variants in vitro and in vivo, but did not impact the biological activity of ACE2. Compared with neutralizing antibodies, small molecule inhibitors have several advantages, such as broad-spectrum inhibitory effect, low cost, and simple administration methods. Several small-molecule inhibitors disrupt viral binding by targeting the ACE2 and N-terminal domain (NTD) of SARS-CoV-2 spike protein. Known drugs such as chloroquine and hydroxychloroquine could also block the infection of SARS-CoV-2 by interacting with residue Lys353 in the peptidase domain of ACE2. The transmembrane protease serine 2 (TMPRSS2) inhibitors Camostat mesylate and Proxalutamide inhibit infection by blocking TMPRSS2 mediates viral membrane fusion. The main protease inhibitor Paxlovid and RNA-dependent RNA polymerase inhibitor Azvudine have been approved for treatment of COVID-19 patients. This review summarizes the current research status of neutralizing antibodies and small molecule inhibitors and prospects for their application. We expect to provide more valuable information for further studies in this field.

Result Analysis
Print
Save
E-mail