1.Research on The Role of Dopamine in Regulating Sleep and Wakefulness Through Exercise
Li-Juan HOU ; Ya-Xuan GENG ; Ke LI ; Zhao-Yang HUANG ; Lan-Qun MAO
Progress in Biochemistry and Biophysics 2025;52(1):88-98
Sleep is an instinctive behavior alternating awakening state, sleep entails many active processes occurring at the cellular, circuit and organismal levels. The function of sleep is to restore cellular energy, enhance immunity, promote growth and development, consolidate learning and memory to ensure normal life activities. However, with the increasing of social pressure involved in work and life, the incidence of sleep disorders (SD) is increasing year by year. In the short term, sleep disorders lead to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. There are many ways to directly or indirectly contribute to sleep disorder and keep the hormones, including pharmacological alternative treatments, light therapy and stimulus control therapy. Exercise is also an effective and healthy therapeutic strategy for improving sleep. The intensities, time periods, and different types of exercise have different health benefits for sleep, which can be found through indicators such as sleep quality, sleep efficiency and total sleep time. So it is more and more important to analyze the mechanism and find effective regulation targets during sleep disorder through exercise. Dopamine (DA) is an important neurotransmitter in the nervous system, which not only participates in action initiation, movement regulation and emotion regulation, but also plays a key role in the steady-state remodeling of sleep-awakening state transition. Appreciable evidence shows that sleep disorder on humans and rodents evokes anomalies in the dopaminergic signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Experiments have shown that DA in different neural pathways plays different regulatory roles in sleep behavior, we found that increasing evidence from rodent studies revealed a role for ventral tegmental area DA neurons in regulating sleep-wake patterns. DA signal transduction and neurotransmitter release patterns have complex interactions with behavioral regulation. In addition, experiments have shown that exercise causes changes in DA homeostasis in the brain, which may regulate sleep through different mechanisms, including cAMP response element binding protein signal transduction, changes in the circadian rhythm of biological clock genes, and interactions with endogenous substances such as adenosine, which affect neuronal structure and play a neuroprotective role. This review aims to introduce the regulatory effects of exercise on sleep disorder, especially the regulatory mechanism of DA in this process. The analysis of intracerebral DA signals also requires support from neurophysiological and chemical techniques. Our laboratory has established and developed an in vivo brain neurochemical analysis platform, which provides support for future research on the regulation of sleep-wake cycles by movement. We hope it can provide theoretical reference for the formulation of exercise prescription for clinical sleep disorder and give some advice to the combined intervention of drugs and exercise.
2.Research progress on the mechanism of action of rosmarinic acid in the prevention of cardiovascular diseases
Ke CAI ; Sheng-ru HUANG ; Fang-fang GAO ; Xiu-juan PENG ; Sheng GUO ; Feng LIU ; Jin-ao DUAN ; Shu-lan SU
Acta Pharmaceutica Sinica 2025;60(1):12-21
With the rapid development of social economy and the continuous improvement of human living standard, the incidence, fatality and recurrence rates of cardiovascular disease (CVD) are increasing year by year, which seriously affects people's life and health. Conventional therapeutic drugs have limited improvement on the disability rate, so the search for new therapeutic drugs and action targets has become one of the hotspots of current research. In recent years, the therapeutic role of the natural compound rosmarinic acid (RA) in CVD has attracted much attention, which is capable of preventing CVD by modulating multiple signalling pathways and exerting physiological activities such as antioxidant, anti-apoptotic, anti-inflammatory, anti-platelet aggregation, as well as anti-coagulation and endothelial function protection. In this paper, the role of RA in the prevention of CVD is systematically sorted out, and its mechanism of action is summarised and analysed, with a view to providing a scientific basis and important support for the in-depth exploration of the prevention value of RA in CVD and its further development as a prevention drug.
3.Detection rate and logistic regression analysis of pulmonary infection in patients with acute exacerbation of chronic obstructive pulmonary disease
Yongli XUE ; Juan DU ; Yinzhen SHU ; Lan LIN ; Jun LIU
Journal of Public Health and Preventive Medicine 2025;36(2):43-46
Objective To analyze the detection rate and risk factors of pulmonary infection in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Methods A total of 308 patients with AECOPD hospitalized at the Second Affiliated Hospital of Chengdu Medical College were selected from October 2020 to October 2023 as the research subjects. The incidence of pulmonary infections was analyzed, and univariate and logistic multivariate regression analyses were conducted to identify the risk factors of pulmonary infections. Results Among the 308 patients with AECOPD, 155 cases (50.32%) had pulmonary infection and were selected as the infected group, and 153 cases without pulmonary infection were included in the uninfected group. There were no obvious differences in gender, body mass index, education level, drinking history, hypertension, heart failure and malnutrition between the two groups (P>0.05). There were significant differences between the two groups in age, hospitalization time, mechanical ventilation history, smoking history, glucocorticoid use time, and diabetes mellitus (P<0.05). Logistic analysis showed that the ORs of pulmonary infection risk in AECOPD patients with age ≥ 60 years old, hospitalization time ≥ 14 days, mechanical ventilation history, glucocorticoid use time ≥ 7 days, diabetes mellitus, and smoking history were 2.740 (1.024-7.330), 4.586 (2.318-9.071), 3.971 (1.806-8.731), 3.264 (1.419-7.508), 2.680 (1.012-7.100), and 2.826 (1.156-6.909), respectively. Conclusion The risk of pulmonary infection is high in AECOPD patients, which is influenced by factors such as age, hospitalization time, mechanical ventilation history, smoking history, and glucocorticoid use time. Clinical screening should be focused on the above indicators and active prevention and treatment measures should be taken to reduce the occurrence of pulmonary infection.
4.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
5.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
6.Exploration of the Treatment of Antibiotic-Associated Diarrhea in Children from the Perspective of Spleen
Hao-Dong SU ; Hao-Ling ZHENG ; Ling-Juan LIU ; Fei LUO ; Xiu-Lan DONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):1058-1062
Antibiotic-associated diarrhea(AAD)in children is a type of diarrhea that occurs after the use of antibiotics in children,and its pathogenesis is closely related to the intestinal flora.The medication of antibiotics can affect the metabolic function of the intestinal flora and the immune function of the body,and then leads to the occurrence of AAD.In the view of Chinese medicine,AAD in children is mainly involved the spleen,and the etiology of the disease is due to the weakness of the spleen and stomach of the body constitution together with the attack of the pestilential pathogen and the accumulation of drug toxin.The pathogenesis of ADD in children is characterized by spleen deficiency with predominant dampness,deficiency of spleen qi,and insufficiency of spleen yang.Spleen deficiency is the root cause of pediatric AAD,and spleen and intestinal flora have commonality,so the treatment of pediatric AAD can be performed from the perspective of the spleen.The treatment of pediatric ADD from the spleen follows the principle of strengthening and activating the spleen,and the regulation of the spleen for achieving the purpose of treating the disease from the root can be achieved by the methods of strengthening spleen and draining dampness,strengthening spleen and replenishing qi,and strengthening spleen and warming yang separately with the fundamental prescriptions of Shenlin Baizhu Powder,Sijunzi Decoction,and Fuzi Lizhong Pills.
7.Relationship between self-perceived noise intensity and sleep quality in noise-exposed workers—A mediating role of negative emotions
Li WANG ; Lei HUANG ; Jingxuan MA ; Kewei ZENG ; Juan WANG ; Yajia LAN
Journal of Environmental and Occupational Medicine 2024;41(5):519-525
Background Studies on the relationships of environmental noise exposure with negative emotions and sleep quality have long been reported. Self-perceived noise intensity is not only related to environmental noise exposure, but also reflects an individual's susceptibility to noise; however, few studies on self-perceived noise intensity, negative emotions, and sleep quality have been reported, and it is not clear whether negative emotions play a mediating role in the relationship between self-perceived noise intensity and sleep quality. Objective To analyze the mediating role of negative emotions (anxiety, depression, and stress) in the relationship between self-perceived noise intensity and sleep quality in noise-exposed workers, and to provide a scientific basis for addressing psychological problems and sleep quality induced by noise exposure. Methods Stratified cluster sampling was used to select noise-exposed workers from a large equipment manufacturing plant in Chengdu from May to June 2023, and demographic characteristics were investigated using a self-designed general information questionnaire; self-perceived noise intensity was reported by the study subjects as the noise intensity of their workplaces; sleep quality was synthesized from three indicators: night sleep duration, self-perceived sleep quality, and sleep-related symptoms; the Anxiety-Depression-Stress Scale (DASS-21 scale) was used to evaluate anxiety, depression, and stress of a worker. Structural equation modeling was used to analyze the pathways of negative emotions (anxiety, depression, and stress) between self-perceived noise intensity and sleep quality. Results The positive rates of negative emotions were 33.1% (anxiety symptoms, 215/649), 26.0% (depression symptoms, 169/649), and 14.0% (stress symptoms, 91/649), respectively in a total of 649 noise-exposed workers. Self-perceived noise intensity was positively correlated with sleep quality score (r=0.218, P<0.001) and negative emotions (anxiety, depression, and stress) (r=0.167, 0.145, 0.167, P<0.001); sleep quality score was positively correlated with negative emotions (anxiety, depression, and stress) (r=0.512, 0.447, 0.513, P<0.001). The results of path analysis showed that the negative emotions (anxiety, depression, and stress) partially mediated between self-perceived noise intensity and sleep quality (β=0.123,P<0.001). Self-perceived noise intensity was positively correlated with negative emotions and sleep quality, and there was a path of self-perceived noise intensity → negative emotion → sleep quality (P<0.001), and the mediating effect accounted for 42.71%. Conclusion The positive rates of anxiety, depression, and stress are high among the noise-receiving workers in this manufacturing industry, and negative emotions characterized by anxiety, depression, and stress partially mediate the relationship between self-perceived noise intensity and sleep quality.
8.Exploration on bioactive equivalent combinatorial components of Xiaoke formula and its mechanism based on insulin resistance mice
Jian ZHANG ; Wen-juan MA ; Lin-jie DONG ; Jiang-lan LONG ; Yu ZHANG ; Dan YAN
Acta Pharmaceutica Sinica 2024;59(6):1698-1705
Xiaoke formula (XKF) is a classic formula for the treatment of insulin resistance (IR), but there is still unclear on bioactive equivalent combinatorial components (BECC) of XKF. In this study, based on the previous research of our team, three components, berberine, astragaloside IV and chlorogenic acid, were selected as the BECC of XKF, and their efficacy and mechanism were investigated. A high-fat diet-induced IR mouse model was used to detect blood glucose, insulin sensitivity, lipid metabolism, immune & inflammatory factors, etc., and staining of pathology sections was used to detect histopathological changes. Network pharmacology was used to predict the potential targets and signaling pathways of XKF and its BECC, and the results of the network were verified by Western blot. The animal welfare and experimental procedures followed the regulations of the Laboratory Animal Ethics Committee of Beijing MDKN Biotech Company (MDKN-2023-019). The results showed that BECC, which was composed of berberine, astragaloside IV and chlorogenic acid in the ratio of the original formula of XKF, was comparable to XKF in improving the glycemia, insulin sensitivity, histopathological damage, dyslipidemia, and immuno-inflammation in IR mice. The results of network pharmacology and Western blot suggested that the BECC of XKF and XKF might alleviate IR by promoting the activation of hepatic phosphatidylinositol 3-kinase (PI3K), phosphorylation of protein kinase B (AKT), and inhibiting the expression of glucose-6-phosphate phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1), the key limiting enzymes of hepatic gluconeogenesis. The above results suggest that berberine, astragaloside IV and chlorogenic acid can be used as the potential BECC of XKF to improve IR, and can regulate lipid metabolism, immuno-inflammation, and promote hepatic PI3K/AKT signaling to inhibit hepatic gluconeogenesis, regulate glucose homeostasis, and improve IR in mice.
9.Evidence summary for prevention and management of gastric retention in premature infants
Juan ZHANG ; Jiao HE ; Mengran LI ; Lan ZHANG
Chinese Journal of Practical Nursing 2024;40(11):858-863
Objective:To select and obtain relevant evidence on the prevention and management of gastric retention in premature infants, so as to form the best summary of evidence.Methods:According to the "6S" evidence model system, we searched the domestic and foreign evidence-based databases, relevant guide websites, and association websites for all literature on the prevention and management of gastric retention in premature infants, including clinical decisions, guidelines, best practice information books, evidence summaries, systematic evaluations, and expert consensus. The search period was from January 1, 2013 to June 8, 2023.Results:A total of 12 articles were included, including 5 guidelines, 1 recommended practice, 5 systematic reviews, 1 expert consensuses. A total of 20 pieces of best evidence were collected, mainly involving 6 aspects of feeding management, placement of gastric tube, position management, gastric residue monitoring, gastric residue treatment, intervening measure.Conclusions:This study summarized the best evidence for the prevention and management of gastric retention in premature infants, so as to provide theoretical basis for clinical management of gastric retention and promote the establishment of enteral nutrition in premature infants.
10.The role of comprehensive intervention measures in improving the patho-gen detection rate of hospitalized patients before antimicrobial therapy
Yue-Li LI ; Jin-Lan CUI ; Lan-Juan MEI ; Qiu-Chun LIU ; Ju-Fang TIAN
Chinese Journal of Infection Control 2024;23(3):370-376
Objective To understand the pathogen detection of hospitalized patients before antimicrobial therapy in a hospital through implementation of comprehensive intervention measures,and provide reference basis for the de-velopment of targeted measures.Methods Hospitalized patients who received therapeutic antimicrobial agents in this hospital were selected as the research subjects.Patients who were hospitalized from January to May 2022 were selected as the pre-intervention group,comprehensive intervention measures were taken from June to October 2022,and those who were hospitalized from November 2022 to March 2023 were selected as the post-intervention group.The pathogen detection rate before antimicrobial therapy,sterile specimen detection rate,antimicrobial use rate,de-tection rate of key multidrug-resistant organisms of patients before and after the intervention were analyzed.Results Compared to before intervention,the proportion of pathogen detection rate before antimicrobial therapy(62.09%vs 74.04%),detection rate of healthcare-associated infection diagnosis-related pathogens(62.82%vs 92.73%),and sterile specimen detection rate(35.17%vs 41.06%)of hospitalized patients after intervention all increased signifi-cantly,with statistically significant differences(all P<0.05).After intervention,pathogen detection rate before the combination use of key antimicrobial agents was not statistically different from before intervention(93.33%vs 90.48%,P>0.05),while antimicrobial use rate was lower than before intervention(39.93%vs 44.95%,P<0.05).There was no statistically significant difference in the detection rate of key multidrug-resistant organisms be-fore and after intervention(all P>0.05).Conclusion Adopting scientific and rational intervention measures can improve the pathogen detection rate,provide a reference basis for the rational use of antimicrobial agents.There was no significant improvement in the pathogen detection rate before the combination use of key antimicrobial agents and the detection rate of key multidrug-resistant organisms,indicating that relevant measures still need to be further optimized.


Result Analysis
Print
Save
E-mail