1.The 2024 Korean Enhanced Recovery After Surgery (ERAS) guidelines for colorectal cancer: a secondary publication
Kil-yong LEE ; Soo Young LEE ; Miyoung CHOI ; Moonjin KIM ; Ji Hong KIM ; Ju Myung SONG ; Seung Yoon YANG ; In Jun YANG ; Moon Suk CHOI ; Seung Rim HAN ; Eon Chul HAN ; Sang Hyun HONG ; Do Joong PARK ; Sang-Jae PARK ;
Annals of Coloproctology 2025;41(1):3-26
The Korean Enhanced Recovery After Surgery (ERAS) Committee within the Korean Society of Surgical Metabolism and Nutrition was established to develop ERAS guidelines tailored to the Korean context. This guideline focuses on creating the most current evidence-based practice guidelines for ERAS purposes, based on systematic reviews. All key questions targeted randomized controlled trials exclusively, and if fewer than 2 were available, studies employing propensity score matching were also included. Recommendations for each key question were marked with strength of recommendation and level of evidence following internal and external review processes by the committee.
2.The 2024 Korean Enhanced Recovery After Surgery (ERAS) guidelines for colorectal cancer: a secondary publication
Kil-yong LEE ; Soo Young LEE ; Miyoung CHOI ; Moonjin KIM ; Ji Hong KIM ; Ju Myung SONG ; Seung Yoon YANG ; In Jun YANG ; Moon Suk CHOI ; Seung Rim HAN ; Eon Chul HAN ; Sang Hyun HONG ; Do Joong PARK ; Sang-Jae PARK ;
Annals of Coloproctology 2025;41(1):3-26
The Korean Enhanced Recovery After Surgery (ERAS) Committee within the Korean Society of Surgical Metabolism and Nutrition was established to develop ERAS guidelines tailored to the Korean context. This guideline focuses on creating the most current evidence-based practice guidelines for ERAS purposes, based on systematic reviews. All key questions targeted randomized controlled trials exclusively, and if fewer than 2 were available, studies employing propensity score matching were also included. Recommendations for each key question were marked with strength of recommendation and level of evidence following internal and external review processes by the committee.
3.The 2024 Korean Enhanced Recovery After Surgery (ERAS) guidelines for colorectal cancer: a secondary publication
Kil-yong LEE ; Soo Young LEE ; Miyoung CHOI ; Moonjin KIM ; Ji Hong KIM ; Ju Myung SONG ; Seung Yoon YANG ; In Jun YANG ; Moon Suk CHOI ; Seung Rim HAN ; Eon Chul HAN ; Sang Hyun HONG ; Do Joong PARK ; Sang-Jae PARK ;
Annals of Coloproctology 2025;41(1):3-26
The Korean Enhanced Recovery After Surgery (ERAS) Committee within the Korean Society of Surgical Metabolism and Nutrition was established to develop ERAS guidelines tailored to the Korean context. This guideline focuses on creating the most current evidence-based practice guidelines for ERAS purposes, based on systematic reviews. All key questions targeted randomized controlled trials exclusively, and if fewer than 2 were available, studies employing propensity score matching were also included. Recommendations for each key question were marked with strength of recommendation and level of evidence following internal and external review processes by the committee.
4.The 2024 Korean Enhanced Recovery After Surgery (ERAS) guidelines for colorectal cancer: a secondary publication
Kil-yong LEE ; Soo Young LEE ; Miyoung CHOI ; Moonjin KIM ; Ji Hong KIM ; Ju Myung SONG ; Seung Yoon YANG ; In Jun YANG ; Moon Suk CHOI ; Seung Rim HAN ; Eon Chul HAN ; Sang Hyun HONG ; Do Joong PARK ; Sang-Jae PARK ;
Annals of Coloproctology 2025;41(1):3-26
The Korean Enhanced Recovery After Surgery (ERAS) Committee within the Korean Society of Surgical Metabolism and Nutrition was established to develop ERAS guidelines tailored to the Korean context. This guideline focuses on creating the most current evidence-based practice guidelines for ERAS purposes, based on systematic reviews. All key questions targeted randomized controlled trials exclusively, and if fewer than 2 were available, studies employing propensity score matching were also included. Recommendations for each key question were marked with strength of recommendation and level of evidence following internal and external review processes by the committee.
5.The 2024 Korean Enhanced Recovery After Surgery (ERAS) guidelines for colorectal cancer: a secondary publication
Kil-yong LEE ; Soo Young LEE ; Miyoung CHOI ; Moonjin KIM ; Ji Hong KIM ; Ju Myung SONG ; Seung Yoon YANG ; In Jun YANG ; Moon Suk CHOI ; Seung Rim HAN ; Eon Chul HAN ; Sang Hyun HONG ; Do Joong PARK ; Sang-Jae PARK ;
Annals of Coloproctology 2025;41(1):3-26
The Korean Enhanced Recovery After Surgery (ERAS) Committee within the Korean Society of Surgical Metabolism and Nutrition was established to develop ERAS guidelines tailored to the Korean context. This guideline focuses on creating the most current evidence-based practice guidelines for ERAS purposes, based on systematic reviews. All key questions targeted randomized controlled trials exclusively, and if fewer than 2 were available, studies employing propensity score matching were also included. Recommendations for each key question were marked with strength of recommendation and level of evidence following internal and external review processes by the committee.
6.Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies
Seong Min CHOI ; Ju-Hee LEE ; Soyeon KO ; Soon-Sun HONG ; Hyo-Eon JIN
Biomolecules & Therapeutics 2024;32(6):708-722
Bispecific antibodies represent a significant advancement in therapeutic antibody engineering, offering the ability to simultaneously target two distinct antigens. This dual-targeting capability enhances therapeutic efficacy, especially in complex diseases, such as cancer and autoimmune disorders, where drug resistance and incomplete target coverage are prevalent challenges.Bispecific antibodies facilitate immune cell engagement and disrupt multiple signaling pathways, providing a more comprehensive treatment approach than traditional monoclonal antibodies. However, the intricate structure of bispecific antibodies introduces unique pharmacokinetic challenges, including issues related to their absorption, distribution, metabolism, and excretion, which can significantly affect their efficacy and safety. This review provides an in-depth analysis of the structural design, mechanisms of action, and pharmacokinetics of the currently approved bispecific antibodies. It also highlights the engineering innovations that have been implemented to overcome these challenges, such as Fc modifications and advanced dimerization techniques, which enhance the stability and half-life of bispecific antibodies. Significant progress has been made in bispecific antibody technology;however, further research is necessary to broaden their clinical applications, enhance their safety profiles, and optimize their incorporation into combination therapies. Continuous advancements in this field are expected to enable bispecific antibodies to provide more precise and effective therapeutic strategies for a range of complex diseases, ultimately improving patient outcomes and advancing precision medicine.
7.Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies
Seong Min CHOI ; Ju-Hee LEE ; Soyeon KO ; Soon-Sun HONG ; Hyo-Eon JIN
Biomolecules & Therapeutics 2024;32(6):708-722
Bispecific antibodies represent a significant advancement in therapeutic antibody engineering, offering the ability to simultaneously target two distinct antigens. This dual-targeting capability enhances therapeutic efficacy, especially in complex diseases, such as cancer and autoimmune disorders, where drug resistance and incomplete target coverage are prevalent challenges.Bispecific antibodies facilitate immune cell engagement and disrupt multiple signaling pathways, providing a more comprehensive treatment approach than traditional monoclonal antibodies. However, the intricate structure of bispecific antibodies introduces unique pharmacokinetic challenges, including issues related to their absorption, distribution, metabolism, and excretion, which can significantly affect their efficacy and safety. This review provides an in-depth analysis of the structural design, mechanisms of action, and pharmacokinetics of the currently approved bispecific antibodies. It also highlights the engineering innovations that have been implemented to overcome these challenges, such as Fc modifications and advanced dimerization techniques, which enhance the stability and half-life of bispecific antibodies. Significant progress has been made in bispecific antibody technology;however, further research is necessary to broaden their clinical applications, enhance their safety profiles, and optimize their incorporation into combination therapies. Continuous advancements in this field are expected to enable bispecific antibodies to provide more precise and effective therapeutic strategies for a range of complex diseases, ultimately improving patient outcomes and advancing precision medicine.
8.Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies
Seong Min CHOI ; Ju-Hee LEE ; Soyeon KO ; Soon-Sun HONG ; Hyo-Eon JIN
Biomolecules & Therapeutics 2024;32(6):708-722
Bispecific antibodies represent a significant advancement in therapeutic antibody engineering, offering the ability to simultaneously target two distinct antigens. This dual-targeting capability enhances therapeutic efficacy, especially in complex diseases, such as cancer and autoimmune disorders, where drug resistance and incomplete target coverage are prevalent challenges.Bispecific antibodies facilitate immune cell engagement and disrupt multiple signaling pathways, providing a more comprehensive treatment approach than traditional monoclonal antibodies. However, the intricate structure of bispecific antibodies introduces unique pharmacokinetic challenges, including issues related to their absorption, distribution, metabolism, and excretion, which can significantly affect their efficacy and safety. This review provides an in-depth analysis of the structural design, mechanisms of action, and pharmacokinetics of the currently approved bispecific antibodies. It also highlights the engineering innovations that have been implemented to overcome these challenges, such as Fc modifications and advanced dimerization techniques, which enhance the stability and half-life of bispecific antibodies. Significant progress has been made in bispecific antibody technology;however, further research is necessary to broaden their clinical applications, enhance their safety profiles, and optimize their incorporation into combination therapies. Continuous advancements in this field are expected to enable bispecific antibodies to provide more precise and effective therapeutic strategies for a range of complex diseases, ultimately improving patient outcomes and advancing precision medicine.
9.The 2024 Korean Enhanced Recovery After Surgery guidelines for colorectal cancer
Kil-yong LEE ; Soo Young LEE ; Miyoung CHOI ; Moonjin KIM ; Ji Hong KIM ; Ju Myung SONG ; Seung Yoon YANG ; In Jun YANG ; Moon Suk CHOI ; Seung Rim HAN ; Eon Chul HAN ; Sang Hyun HONG ; Do Joong PARK ; Sang-Jae PARK ;
Annals of Clinical Nutrition and Metabolism 2024;16(2):22-42
The Korean Enhanced Recovery After Surgery (ERAS) Committee within the Korean Society of Surgical Metabolism and Nutrition was established to develop ERAS guidelines tailored to the Korean context. This guideline focuses on creating the most current evidence-based practice guidelines for ERAS based on systematic reviews. All key questions targeted randomized controlled trials (RCTs) exclusively. If fewer than two RCTs were available, studies using propensity score matching were also included. Recommendations for each key question were marked with strength of recommendation and level of evidence following internal and external review processes by the committee.
10.A 10-Gene Signature to Predict the Prognosis of Early-Stage Triple-Negative Breast Cancer
Chang Min KIM ; Kyong Hwa PARK ; Yun Suk YU ; Ju Won KIM ; Jin Young PARK ; Kyunghee PARK ; Jong-Han YU ; Jeong Eon LEE ; Sung Hoon SIM ; Bo Kyoung SEO ; Jin Kyeoung KIM ; Eun Sook LEE ; Yeon Hee PARK ; Sun-Young KONG
Cancer Research and Treatment 2024;56(4):1113-1125
Purpose:
Triple-negative breast cancer (TNBC) is a particularly challenging subtype of breast cancer, with a poorer prognosis compared to other subtypes. Unfortunately, unlike luminal-type cancers, there is no validated biomarker to predict the prognosis of patients with early-stage TNBC. Accurate biomarkers are needed to establish effective therapeutic strategies.
Materials and Methods:
In this study, we analyzed gene expression profiles of tumor samples from 184 TNBC patients (training cohort, n=76; validation cohort, n=108) using RNA sequencing.
Results:
By combining weighted gene expression, we identified a 10-gene signature (DGKH, GADD45B, KLF7, LYST, NR6A1, PYCARD, ROBO1, SLC22A20P, SLC24A3, and SLC45A4) that stratified patients by risk score with high sensitivity (92.31%), specificity (92.06%), and accuracy (92.11%) for invasive disease-free survival. The 10-gene signature was validated in a separate institution cohort and supported by meta-analysis for biological relevance to well-known driving pathways in TNBC. Furthermore, the 10-gene signature was the only independent factor for invasive disease-free survival in multivariate analysis when compared to other potential biomarkers of TNBC molecular subtypes and T-cell receptor β diversity. 10-gene signature also further categorized patients classified as molecular subtypes according to risk scores.
Conclusion
Our novel findings may help address the prognostic challenges in TNBC and the 10-gene signature could serve as a novel biomarker for risk-based patient care.

Result Analysis
Print
Save
E-mail