1.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
		                        		
		                        			 Objective:
		                        			To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck. 
		                        		
		                        			Materials and Methods:
		                        			Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale. 
		                        		
		                        			Results:
		                        			FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE. 
		                        		
		                        			Conclusion
		                        			DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance. 
		                        		
		                        		
		                        		
		                        	
2.Effects of hepatic fibrosis on the quantification of hepatic steatosis using the controlled attenuation parameter in patients with chronic hepatitis B
Hee Jun PARK ; Hyo Jeong KANG ; So Yeon KIM ; Seonghun YOON ; Seunghee BAEK ; In Hye SONG ; Hyeon Ji JANG ; Jong Keon JANG
Ultrasonography 2025;44(1):83-91
		                        		
		                        			 Purpose:
		                        			This study assessed the impact of hepatic fibrosis on the diagnostic performance of the controlled attenuation parameter (CAP) in quantifying hepatic steatosis in patients with chronic hepatitis B (CHB). 
		                        		
		                        			Methods:
		                        			CHB patients who underwent liver stiffness measurement (LSM) and CAP assessment using transient elastography before liver resection between 2019 and 2022 were retrospectively evaluated. Clinical data included body mass index (BMI) and laboratory parameters. The histologically determined hepatic fat fraction (HFF) and fibrosis stages were reviewed by pathologists blinded to clinical and radiologic data. The Pearson correlation coefficient between CAP and HFF was calculated. The diagnostic performance of CAP for significant hepatic steatosis (HFF ≥10%) was assessed using areas under the receiver operating curve (AUCs), stratified by fibrosis stages (F0-1 vs. F2-4). Factors significantly associated with CAP were determined by univariable and multivariable linear regression analyses. 
		                        		
		                        			Results:
		                        			Among 399 CHB patients (median age 59 years; 306 men), 16.3% showed significant steatosis. HFF ranged from 0% to 60%. Of these patients, 9.8%, 19.8%, 29.3%, and 41.1% had fibrosis stages F0-1, F2, F3, and F4, respectively. CAP positively correlated with HFF (r=0.445, P<0.001). The AUC of CAP for diagnosing significant steatosis was 0.786 (95% confidence interval [CI], 0.726 to 0.845) overall, and significantly lower in F2-4 (0.772; 95% CI, 0.708 to 0.836) than in F0-1 (0.924; 95% CI, 0.835 to 1.000) (P=0.006). Multivariable analysis showed that BMI (P<0.001) and HFF (P<0.001) significantly affected CAP, whereas LSM and fibrosis stages did not. 
		                        		
		                        			Conclusion
		                        			CAP evaluations of significant hepatic steatosis are less reliable in CHB patients with significant or more advanced (F2-4) than with no or mild (F0-1) fibrosis. 
		                        		
		                        		
		                        		
		                        	
3.A prospective comparison of two ultrasound attenuation imaging modes using different frequencies for assessing hepatic steatosis
Hyeon Ji JANG ; Jong Keon JANG ; Subin HEO ; Boyeon KOO ; In Hye SONG ; Hee Jun PARK ; Seonghun YOON ; So Yeon KIM
Ultrasonography 2025;44(3):202-211
		                        		
		                        			 Purpose:
		                        			This study compared the diagnostic performance of two attenuation imaging (ATI) modes—low-frequency (3 MHz) and high-frequency (4 MHz)—for assessing hepatic steatosis, with histopathological hepatic fat fraction (HFF) as the reference standard. 
		                        		
		                        			Methods:
		                        			This prospective single-center study enrolled participants with suspected metabolic dysfunction-associated steatotic liver disease (MASLD) scheduled for liver biopsy or surgery between June 2023 and June 2024. Attenuation coefficient (AC) values were consecutively measured using low- and high-frequency ATI modes, while the skin-to-region of interest distance (SRD) was measured simultaneously. Spearman correlation analysis evaluated the relationships of AC with HFF and SRD, and linear regression identified factors affecting AC. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUROC). 
		                        		
		                        			Results:
		                        			In total, 119 participants (mean age, 37.2±12.0 years; 87 men) were included, with 73 (61.3%) diagnosed with MASLD. HFF ranged from 0% to 50%. The AC values in the lowfrequency mode were significantly higher than those in the high-frequency mode (0.61 vs. 0.54 dB/cm/MHz, P<0.001). HFF significantly influenced AC in both modes, whereas SRD affected AC only in the high-frequency mode (P<0.001). AC correlated positively with HFF in both modes (rs≥0.514, P<0.001) and negatively with SRD in the high-frequency mode (rs=-0.338, P<0.001). The AUROC for hepatic steatosis did not differ significantly between the two modes (0.751 vs. 0.771; P=0.609). 
		                        		
		                        			Conclusion
		                        			The low-frequency mode produced higher AC values than the high-frequency mode and demonstrated comparable diagnostic accuracy for assessing hepatic steatosis. Unlike the high-frequency mode, the low-frequency mode was not influenced by SRD. 
		                        		
		                        		
		                        		
		                        	
4.Long-Term Incidence of Gastrointestinal Bleeding Following Ischemic Stroke
Jun Yup KIM ; Beom Joon KIM ; Jihoon KANG ; Do Yeon KIM ; Moon-Ku HAN ; Seong-Eun KIM ; Heeyoung LEE ; Jong-Moo PARK ; Kyusik KANG ; Soo Joo LEE ; Jae Guk KIM ; Jae-Kwan CHA ; Dae-Hyun KIM ; Tai Hwan PARK ; Kyungbok LEE ; Hong-Kyun PARK ; Yong-Jin CHO ; Keun-Sik HONG ; Kang-Ho CHOI ; Joon-Tae KIM ; Dong-Eog KIM ; Jay Chol CHOI ; Mi-Sun OH ; Kyung-Ho YU ; Byung-Chul LEE ; Kwang-Yeol PARK ; Ji Sung LEE ; Sujung JANG ; Jae Eun CHAE ; Juneyoung LEE ; Min-Surk KYE ; Philip B. GORELICK ; Hee-Joon BAE ;
Journal of Stroke 2025;27(1):102-112
		                        		
		                        			 Background:
		                        			and Purpose Previous research on patients with acute ischemic stroke (AIS) has shown a 0.5% incidence of major gastrointestinal bleeding (GIB) requiring blood transfusion during hospitalization. The existing literature has insufficiently explored the long-term incidence in this population despite the decremental impact of GIB on stroke outcomes. 
		                        		
		                        			Methods:
		                        			We analyzed the data from a cohort of patients with AIS admitted to 14 hospitals as part of a nationwide multicenter prospective stroke registry between 2011 and 2013. These patients were followed up for up to 6 years. The occurrence of major GIB events, defined as GIB necessitating at least two units of blood transfusion, was tracked using the National Health Insurance Service claims data. 
		                        		
		                        			Results:
		                        			Among 10,818 patients with AIS (male, 59%; mean age, 68±13 years), 947 (8.8%) experienced 1,224 episodes of major GIB over a median follow-up duration of 3.1 years. Remarkably, 20% of 947 patients experienced multiple episodes of major GIB. The incidence peaked in the first month after AIS, reaching 19.2 per 100 person-years, and gradually decreased to approximately one-sixth of this rate by the 2nd year with subsequent stabilization. Multivariable analysis identified the following predictors of major GIB: anemia, estimated glomerular filtration rate <60 mL/min/1.73 m2 , and a 3-month modified Rankin Scale score of ≥4. 
		                        		
		                        			Conclusion
		                        			Patients with AIS are susceptible to major GIB, particularly in the first month after the onset of AIS, with the risk decreasing thereafter. Implementing preventive strategies may be important, especially for patients with anemia and impaired renal function at stroke onset and those with a disabling stroke. 
		                        		
		                        		
		                        		
		                        	
5.Predicting Mortality and Cirrhosis-Related Complications with MELD3.0: A Multicenter Cohort Analysis
Jihye LIM ; Ji Hoon KIM ; Ahlim LEE ; Ji Won HAN ; Soon Kyu LEE ; Hyun YANG ; Heechul NAM ; Hae Lim LEE ; Do Seon SONG ; Sung Won LEE ; Hee Yeon KIM ; Jung Hyun KWON ; Chang Wook KIM ; U Im CHANG ; Soon Woo NAM ; Seok-Hwan KIM ; Pil Soo SUNG ; Jeong Won JANG ; Si Hyun BAE ; Jong Young CHOI ; Seung Kew YOON ; Myeong Jun SONG
Gut and Liver 2025;19(3):427-437
		                        		
		                        			 Background/Aims:
		                        			This study aimed to evaluate the performance of the Model for End-Stage Liver Disease (MELD) 3.0 for predicting mortality and liver-related complications compared with the Child-Pugh classification, albumin-bilirubin (ALBI) grade, the MELD, and the MELD sodium (MELDNa) score. 
		                        		
		                        			Methods:
		                        			We evaluated a multicenter retrospective cohort of incorporated patients with cirrhosis between 2013 and 2019. We conducted comparisons of the area under the receiver operating characteristic curve (AUROC) of the MELD3.0 and other models for predicting 3-month mortality. Additionally, we assessed the risk of cirrhosis-related complications according to the MELD3.0 score. 
		                        		
		                        			Results:
		                        			A total of 3,314 patients were included. The mean age was 55.9±11.3 years, and 70.2% of the patients were male. Within the initial 3 months, 220 patients (6.6%) died, and the MELD3.0had the best predictive performance among the tested models, with an AUROC of 0.851, outperforming the Child-Pugh classification, ALBI grade, MELD, and MELDNa. A high MELD3.0score was associated with an increased risk of mortality. Compared with that of the group with a MELD3.0 score <10 points, the adjusted hazard ratio of the group with a score of 10–20 pointswas 2.176, and that for the group with a score of ≥20 points was 4.892. Each 1-point increase inthe MELD3.0 score increased the risk of cirrhosis-related complications by 1.033-fold. The risk of hepatorenal syndrome showed the highest increase, with an adjusted hazard ratio of 1.149, followed by hepatic encephalopathy and ascites. 
		                        		
		                        			Conclusions
		                        			The MELD3.0 demonstrated robust prognostic performance in predicting mortality in patients with cirrhosis. Moreover, the MELD3.0 score was linked to cirrhosis-related complications, particularly those involving kidney function, such as hepatorenal syndrome and ascites. 
		                        		
		                        		
		                        		
		                        	
6.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
		                        		
		                        			 Purpose:
		                        			Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS. 
		                        		
		                        			Materials and Methods:
		                        			This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches. 
		                        		
		                        			Results:
		                        			TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making. 
		                        		
		                        			Conclusion
		                        			TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment. 
		                        		
		                        		
		                        		
		                        	
7.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
		                        		
		                        			 Objective:
		                        			To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck. 
		                        		
		                        			Materials and Methods:
		                        			Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale. 
		                        		
		                        			Results:
		                        			FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE. 
		                        		
		                        			Conclusion
		                        			DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance. 
		                        		
		                        		
		                        		
		                        	
8.Effects of hepatic fibrosis on the quantification of hepatic steatosis using the controlled attenuation parameter in patients with chronic hepatitis B
Hee Jun PARK ; Hyo Jeong KANG ; So Yeon KIM ; Seonghun YOON ; Seunghee BAEK ; In Hye SONG ; Hyeon Ji JANG ; Jong Keon JANG
Ultrasonography 2025;44(1):83-91
		                        		
		                        			 Purpose:
		                        			This study assessed the impact of hepatic fibrosis on the diagnostic performance of the controlled attenuation parameter (CAP) in quantifying hepatic steatosis in patients with chronic hepatitis B (CHB). 
		                        		
		                        			Methods:
		                        			CHB patients who underwent liver stiffness measurement (LSM) and CAP assessment using transient elastography before liver resection between 2019 and 2022 were retrospectively evaluated. Clinical data included body mass index (BMI) and laboratory parameters. The histologically determined hepatic fat fraction (HFF) and fibrosis stages were reviewed by pathologists blinded to clinical and radiologic data. The Pearson correlation coefficient between CAP and HFF was calculated. The diagnostic performance of CAP for significant hepatic steatosis (HFF ≥10%) was assessed using areas under the receiver operating curve (AUCs), stratified by fibrosis stages (F0-1 vs. F2-4). Factors significantly associated with CAP were determined by univariable and multivariable linear regression analyses. 
		                        		
		                        			Results:
		                        			Among 399 CHB patients (median age 59 years; 306 men), 16.3% showed significant steatosis. HFF ranged from 0% to 60%. Of these patients, 9.8%, 19.8%, 29.3%, and 41.1% had fibrosis stages F0-1, F2, F3, and F4, respectively. CAP positively correlated with HFF (r=0.445, P<0.001). The AUC of CAP for diagnosing significant steatosis was 0.786 (95% confidence interval [CI], 0.726 to 0.845) overall, and significantly lower in F2-4 (0.772; 95% CI, 0.708 to 0.836) than in F0-1 (0.924; 95% CI, 0.835 to 1.000) (P=0.006). Multivariable analysis showed that BMI (P<0.001) and HFF (P<0.001) significantly affected CAP, whereas LSM and fibrosis stages did not. 
		                        		
		                        			Conclusion
		                        			CAP evaluations of significant hepatic steatosis are less reliable in CHB patients with significant or more advanced (F2-4) than with no or mild (F0-1) fibrosis. 
		                        		
		                        		
		                        		
		                        	
9.A prospective comparison of two ultrasound attenuation imaging modes using different frequencies for assessing hepatic steatosis
Hyeon Ji JANG ; Jong Keon JANG ; Subin HEO ; Boyeon KOO ; In Hye SONG ; Hee Jun PARK ; Seonghun YOON ; So Yeon KIM
Ultrasonography 2025;44(3):202-211
		                        		
		                        			 Purpose:
		                        			This study compared the diagnostic performance of two attenuation imaging (ATI) modes—low-frequency (3 MHz) and high-frequency (4 MHz)—for assessing hepatic steatosis, with histopathological hepatic fat fraction (HFF) as the reference standard. 
		                        		
		                        			Methods:
		                        			This prospective single-center study enrolled participants with suspected metabolic dysfunction-associated steatotic liver disease (MASLD) scheduled for liver biopsy or surgery between June 2023 and June 2024. Attenuation coefficient (AC) values were consecutively measured using low- and high-frequency ATI modes, while the skin-to-region of interest distance (SRD) was measured simultaneously. Spearman correlation analysis evaluated the relationships of AC with HFF and SRD, and linear regression identified factors affecting AC. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUROC). 
		                        		
		                        			Results:
		                        			In total, 119 participants (mean age, 37.2±12.0 years; 87 men) were included, with 73 (61.3%) diagnosed with MASLD. HFF ranged from 0% to 50%. The AC values in the lowfrequency mode were significantly higher than those in the high-frequency mode (0.61 vs. 0.54 dB/cm/MHz, P<0.001). HFF significantly influenced AC in both modes, whereas SRD affected AC only in the high-frequency mode (P<0.001). AC correlated positively with HFF in both modes (rs≥0.514, P<0.001) and negatively with SRD in the high-frequency mode (rs=-0.338, P<0.001). The AUROC for hepatic steatosis did not differ significantly between the two modes (0.751 vs. 0.771; P=0.609). 
		                        		
		                        			Conclusion
		                        			The low-frequency mode produced higher AC values than the high-frequency mode and demonstrated comparable diagnostic accuracy for assessing hepatic steatosis. Unlike the high-frequency mode, the low-frequency mode was not influenced by SRD. 
		                        		
		                        		
		                        		
		                        	
10.Effects of Deep Learning-Based Reconstruction on the Quality of Accelerated Contrast-Enhanced Neck MRI
Minkook SEO ; Kook-Jin AHN ; Hyun-Soo LEE ; Marcel Dominik NICKEL ; Jinhee JANG ; Yeon Jong HUH ; Ilah SHIN ; Ji Young LEE ; Bum-soo KIM
Korean Journal of Radiology 2025;26(5):446-459
		                        		
		                        			 Objective:
		                        			To compare the quality of deep learning-reconstructed turbo spin-echo (DL-TSE) and conventionally interpolated turbo spin-echo (Conv-TSE) techniques in contrast-enhanced MRI of the neck. 
		                        		
		                        			Materials and Methods:
		                        			Contrast-enhanced T1-weighted DL-TSE and Conv-TSE images were acquired using 3T scanners from 106 patients. DL-TSE employed a closed-source, ‘work-in-progress’ (WIP No. 1062, iTSE, version 10; Siemens Healthineers) algorithm for interpolation and denoising to achieve the same in-plane resolution (axial: 0.26 x 0.26 mm 2 ; coronal: 0.29 x 0.29 mm 2 ) while reducing scan times by 15.9% and 52.6% for axial and coronal scans, respectively. The full width at half maximum (FWHM) and percent signal ghosting were measured using stationary and flow phantom scans, respectively. In patient images, non-uniformity (NU), contrast-to-noise ratio (CNR), and regional mucosal FWHM were evaluated. Two neuroradiologists visually rated the patient images for overall quality, sharpness, regional mucosal conspicuity, artifacts, and lesions using a 5-point Likert scale. 
		                        		
		                        			Results:
		                        			FWHM in the stationary phantom scan was consistently sharper in DL-TSE. The percent signal ghosting outside the flow phantom was lower in DL-TSE (0.06% vs. 0.14%) but higher within the phantom (8.92% vs. 1.75%) compared to ConvTSE. In patient scans, DL-TSE showed non-inferior NU and higher CNR. Regional mucosal FWHM was significantly better in DL-TSE, particularly in the oropharynx (coronal: 1.08 ± 0.31 vs. 1.52 ± 0.46 mm) and hypopharynx (coronal: 1.26 ± 0.35 vs. 1.91 ± 0.56 mm) (both P < 0.001). DL-TSE demonstrated higher overall image quality (axial: 4.61 ± 0.49 vs. 3.32 ± 0.54) and sharpness (axial: 4.40 ± 0.56 vs. 3.11 ± 0.53) (both P < 0.001). In addition, mucosal conspicuity was improved, especially in the oropharynx (axial: 4.41 ± 0.67 vs. 3.40 ± 0.69) and hypopharynx (axial: 4.45 ± 0.58 vs. 3.58 ± 0.63) (both P < 0.001).Extracorporeal ghost artifacts were reduced in DL-TSE (axial: 4.32 ± 0.60 vs. 3.90 ± 0.71, P < 0.001) but artifacts overlapping anatomical structures were slightly more pronounced (axial: 3.78 ± 0.74 vs. 3.95 ± 0.72, P < 0.001). Lesions were detected with higher confidence in DL-TSE. 
		                        		
		                        			Conclusion
		                        			DL-based reconstruction applied to accelerated neck MRI improves overall image quality, sharpness, mucosal conspicuity in motion-prone regions, and lesion detection confidence. Despite more pronounced ghost artifacts overlapping anatomical structures, DL-TSE enables substantial scan time reduction while enhancing diagnostic performance. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail