1.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200
2.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200
3.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200
4.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2024;85(6):1044-1059
In the rapidly evolving healthcare environment, radiologists strive to establish their rightful place.Thus, there is a need for enhanced outpatient and clinical education within the Department of Radiology and exploration of its methodologies. Accordingly, the Korean Society of Radiology established a task force to investigate the clinical and outpatient practice status of radiologists overseas, current state of related education, involvement of other specialties in radiologic practices and education in Korea, and clinical and outpatient practice status among Korean radiologists. Furthermore, a survey on clinical competency enhancement was conducted among the members of the Korean Society of Radiology. These findings suggest the need for visibility and clinical competency enhancement in radiologists and methodologies for strengthening clinical competencies.
5.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2024;85(6):1044-1059
In the rapidly evolving healthcare environment, radiologists strive to establish their rightful place.Thus, there is a need for enhanced outpatient and clinical education within the Department of Radiology and exploration of its methodologies. Accordingly, the Korean Society of Radiology established a task force to investigate the clinical and outpatient practice status of radiologists overseas, current state of related education, involvement of other specialties in radiologic practices and education in Korea, and clinical and outpatient practice status among Korean radiologists. Furthermore, a survey on clinical competency enhancement was conducted among the members of the Korean Society of Radiology. These findings suggest the need for visibility and clinical competency enhancement in radiologists and methodologies for strengthening clinical competencies.
6.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2024;85(6):1044-1059
In the rapidly evolving healthcare environment, radiologists strive to establish their rightful place.Thus, there is a need for enhanced outpatient and clinical education within the Department of Radiology and exploration of its methodologies. Accordingly, the Korean Society of Radiology established a task force to investigate the clinical and outpatient practice status of radiologists overseas, current state of related education, involvement of other specialties in radiologic practices and education in Korea, and clinical and outpatient practice status among Korean radiologists. Furthermore, a survey on clinical competency enhancement was conducted among the members of the Korean Society of Radiology. These findings suggest the need for visibility and clinical competency enhancement in radiologists and methodologies for strengthening clinical competencies.
7.Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain
Jinhyeong JOO ; Ki Jung KIM ; Jiwoon LIM ; Sun Yeong CHOI ; Wuhyun KOH ; C. Justin LEE
Experimental Neurobiology 2024;33(4):180-192
Bestrophin-1 (BEST1) is a Ca2+ -activated anion channel known for its role in astrocytes. Best1 is permeable to gliotransmitters, including GABA, to contribute to tonic GABA inhibition and modulate synaptic transmission in neighboring neurons. Despite the crucial functions of astrocytic BEST1, there is an absence of genetically engineered cell-type specific conditional mouse models addressing these roles. In this study, we developed an astrocyte-specific BEST1 conditional knock-out (BEST1 aKO) mouse line. Using the embryonic stem cell (ES cell) targeting method, we developed Best1 floxed mice (C57BL/6JCya-Best1em1flox /Cya), which have exon 3, 4, 5, and 6 of Best1 flanked by two loxP sites. By crossing with hGFAP-CreERT2 mice, we generated Best1 floxed/hGFAP-CreERT2 mice, which allowed for the tamoxifen-inducible deletion of Best1 under the human GFAP promoter. We characterized its features across various brain regions, including the striatum, hippocampal dentate gyrus (HpDG), and Parafascicular thalamic nucleus (Pf). Compared to the Cre-negative control, we observed significantly reduced BEST1 protein expression in immunohistochemistry (IHC) and tonic GABA inhibition in patch clamp recordings. The reduction in tonic GABA inhibition was 66.7% in the striatum, 46.4% in the HpDG, and 49.6% in the Pf. Our findings demonstrate that the BEST1 channel in astrocytes significantly contributes to tonic inhibition in the local brain areas. These mice will be valuable for future studies not only on tonic GABA release but also on tonic release of gliotransmitters mediated by astrocytic BEST1.
8.Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions
Young Hoon CHANG ; Cheol Min SHIN ; Hae Dong LEE ; Jinbae PARK ; Jiwoon JEON ; Soo-Jeong CHO ; Seung Joo KANG ; Jae-Yong CHUNG ; Yu Kyung JUN ; Yonghoon CHOI ; Hyuk YOON ; Young Soo PARK ; Nayoung KIM ; Dong Ho LEE
Journal of Gastric Cancer 2024;24(3):327-340
Purpose:
Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy.
Materials and Methods:
We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296).
Results:
ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%–88.47%), dysplasia (88.31%; 83.24%– 93.39%), and benign lesions (83.12%; 77.20%–89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%– 93.84%) and 91.43% (86.79%–96.07%), respectively, compared with an accuracy of 60.71% (52.62%–68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%–91.27%), 90.54% (87.21%–93.87%), and 88.85% (85.27%–92.44%), respectively.
Conclusions
ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.
9.Erratum: Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions
Young Hoon CHANG ; Cheol Min SHIN ; Hae Dong LEE ; Jinbae PARK ; Jiwoon JEON ; Soo-Jeong CHO ; Seung Joo KANG ; Jae-Yong CHUNG ; Yu Kyung JUN ; Yonghoon CHOI ; Hyuk YOON ; Young Soo PARK ; Nayoung KIM ; Dong Ho LEE
Journal of Gastric Cancer 2024;24(4):480-
10.Automated Detection and Segmentation of Bone Metastases on Spine MRI Using U-Net:A Multicenter Study
Dong Hyun KIM ; Jiwoon SEO ; Ji Hyun LEE ; Eun-Tae JEON ; DongYoung JEONG ; Hee Dong CHAE ; Eugene LEE ; Ji Hee KANG ; Yoon-Hee CHOI ; Hyo Jin KIM ; Jee Won CHAI
Korean Journal of Radiology 2024;25(4):363-373
Objective:
To develop and evaluate a deep learning model for automated segmentation and detection of bone metastasis on spinal MRI.
Materials and Methods:
We included whole spine MRI scans of adult patients with bone metastasis: 662 MRI series from 302 patients (63.5 ± 11.5 years; male:female, 151:151) from three study centers obtained between January 2015 and August 2021 for training and internal testing (random split into 536 and 126 series, respectively) and 49 MRI series from 20 patients (65.9 ± 11.5 years; male:female, 11:9) from another center obtained between January 2018 and August 2020 for external testing. Three sagittal MRI sequences, including non-contrast T1-weighted image (T1), contrast-enhanced T1-weighted Dixon fat-only image (FO), and contrast-enhanced fat-suppressed T1-weighted image (CE), were used. Seven models trained using the 2D and 3D U-Nets were developed with different combinations (T1, FO, CE, T1 + FO, T1 + CE, FO + CE, and T1 + FO + CE). The segmentation performance was evaluated using Dice coefficient, pixel-wise recall, and pixel-wise precision. The detection performance was analyzed using per-lesion sensitivity and a free-response receiver operating characteristic curve. The performance of the model was compared with that of five radiologists using the external test set.
Results:
The 2D U-Net T1 + CE model exhibited superior segmentation performance in the external test compared to the other models, with a Dice coefficient of 0.699 and pixel-wise recall of 0.653. The T1 + CE model achieved per-lesion sensitivities of 0.828 (497/600) and 0.857 (150/175) for metastases in the internal and external tests, respectively. The radiologists demonstrated a mean per-lesion sensitivity of 0.746 and a mean per-lesion positive predictive value of 0.701 in the external test.
Conclusion
The deep learning models proposed for automated segmentation and detection of bone metastases on spinal MRI demonstrated high diagnostic performance.

Result Analysis
Print
Save
E-mail