1.Host modulation therapy for improving the osseointegration of dental implants under bone healing-suppressed conditions: a preclinical rodent-model experiment
Young Woo SONG ; Jin-Young PARK ; Yoon-Hee KWON ; Wooyoung Eric JANG ; Sung-JinSung-Jin KIMKIM ; Jeong Taeg SEO ; Seok Jun MOON ; Ui-Won JUNG
Journal of Periodontal & Implant Science 2024;54(3):177-188
Purpose:
Placing dental implants in areas with low bone density or in conditions where bone healing is suppressed is challenging for clinicians. An experiment using a rodent model was performed with the aim of determining the efficacy of host modulation by increasing the systemic level of cholesterol sulfate (CS) using Irosustat in the context of the bone healing process around dental implants.
Methods:
In 16 ovariectomised female Sprague-Dawley rats, 2 implant fixtures were placed in the tibial bones (1 fixture on each side). At 1 week after surgery, the high-CS group (n=8) received Irosustat-mixed feed, while the control group (n=8) was fed conventionally. Block specimens were obtained at 5 weeks post-surgery for histologic analysis and the data were evaluated statistically (P<0.05).
Results:
Unlike the high-CS group, half of the specimens in the control group demonstrated severe bone resorption along with a periosteal reaction in the cortex. The mean percentages of bone-to-implant contact (21.5%) and bone density (28.1%) near the implant surface were significantly higher in the high-CS group than in the control group (P<0.05), as was the number of Haversian canals (by 5.3).
Conclusions
Host modulation by increasing the CS level may enhance the osseointegration of dental implants placed under conditions of impaired bone healing.
2.Computationally efficient and stable real-world synthetic emergency room electronic health record data generation: high similarity and privacy preserving diffusion model approach
Javier AGUIRRE ; Jae Yong YU ; Kyu-Hwan JUNG ; Jinsung YOON ; Won Chul CHA
Precision and Future Medicine 2024;8(3):92-104
Purpose:
This study aimed to develop real-world synthetic electronic health record (EHR) for emergency departments using computationally efficient and stable diffusion probabilistic models.
Methods:
In this study, we compared the performance of diffusion models and state-ofthe-art generative adversarial networks (GANs) in terms of statistical similarity, privacy, medical usefulness, and the feasibility of using synthetic data for machine learning purposes.
Results:
Our results demonstrate that diffusion models are significantly more computationally efficient than GANs and perform comparably or slightly better in terms of similarity, privacy, and utility. We also found that the data quality of the diffusion model is statistically very similar for both categorical and continuous values and can address class imbalance precisely. Moreover, the usefulness of synthetic data is almost identical to that of real EHR data. Our privacy analysis showed that the synthetic data generated by the diffusion models were private.
Conclusion
These findings have significant implications for improving the efficiency of emergency settings and enabling real-time emergency room data modeling. This demonstrates the potential of diffusion models for generating computationally efficient high-quality synthetic data. The study concluded that diffusion models can generate real-world synthetic EHRs that are computationally efficient, private, and high-quality, and can be used for machine learning purposes in emergency settings.
3.TNM-Based Head-to-Head Comparison of Urachal Carcinoma and Urothelial Bladder Cancer: Stage-Matched Analysis of a Large Multicenter National Cohort
Sang Hun SONG ; Jaewon LEE ; Young Hwii KO ; Jong Wook KIM ; Seung Il JUNG ; Seok Ho KANG ; Jinsung PARK ; Ho Kyung SEO ; Hyung Joon KIM ; Byong Chang JEONG ; Tae-Hwan KIM ; Se Young CHOI ; Jong Kil NAM ; Ja Yoon KU ; Kwan Joong JOO ; Won Sik JANG ; Young Eun YOON ; Seok Joong YUN ; Sung-Hoo HONG ; Jong Jin OH
Cancer Research and Treatment 2023;55(4):1337-1345
Purpose:
Outcome analysis of urachal cancer (UraC) is limited due to the scarcity of cases and different staging methods compared to urothelial bladder cancer (UroBC). We attempted to assess survival outcomes of UraC and compare to UroBC after stage-matched analyses.
Materials and Methods:
Total 203 UraC patients from a multicenter database and 373 UroBC patients in single institution from 2000 to 2018 were enrolled (median follow-up, 32 months). Sheldon stage conversion to corresponding TNM staging for UraC was conducted for head-to-head comparison to UroBC. Perioperative clinical variables and pathological results were recorded. Stage-matched analyses for survival by stage were conducted.
Results:
UraC patients were younger (mean age, 54 vs. 67 years; p < 0.001), with 163 patients (80.3%) receiving partial cystectomy and 23 patients (11.3%) radical cystectomy. UraC was more likely to harbor ≥ pT3a tumors (78.8% vs. 41.8%). While 5-year recurrence-free survival, cancer-specific survival (CSS) and overall survival were comparable between two groups (63.4%, 67%, and 62.1% in UraC and 61.5%, 75.9%, and 67.8% in UroBC, respectively), generally favorable prognosis for UraC in lower stages (pT1-2) but unfavorable outcomes in higher stages (pT4) compared to UroBC was observed, although only 5-year CSS in ≥ pT4 showed statistical significance (p=0.028). Body mass index (hazard ratio [HR], 0.929), diabetes mellitus (HR, 1.921), pathologic T category (HR, 3.846), and lymphovascular invasion (HR, 1.993) were predictors of CSS for all patients.
Conclusion
Despite differing histology, UraC has comparable prognosis to UroBC with relatively favorable outcome in low stages but worse prognosis in higher stages. The presented system may be useful for future grading and risk stratification of UraC.
4.Kilovoltage radiotherapy for companion animals: dosimetric comparison of 300 kV, 450 kV, and 6 MV X-ray beams
Jaehyeon SEO ; Jaeman SON ; Yeona CHO ; Nohwon PARK ; Dong Wook KIM ; Jinsung KIM ; Myonggeun YOON
Journal of Veterinary Science 2018;19(4):550-556
Radiotherapy for the treatment of cancer in companion animals is currently administered by using megavoltage X-ray machines. Because these machines are expensive, most animal hospitals do not perform radiotherapy. This study evaluated the ability of relatively inexpensive kilovoltage X-ray machines to treat companion animals. A simulation study based on a commercial treatment-planning system was performed for tumors of the brain (non-infectious meningoencephalitis), nasal cavity (malignant nasal tumors), forefoot (malignant muscular tumors), and abdomen (malignant intestinal tumors). The results of kilovoltage (300 kV and 450 kV) and megavoltage (6 MV) X-ray beams were compared. Whereas the 300 kV and 6 MV X-ray beams provided optimal radiation dose homogeneity and conformity, respectively, for brain tumors, the 6 MV X-rays provided optimal homogeneity and radiation conformity for nasal cavity, forefoot, and abdominal tumors. Although megavoltage X-ray beams provided better radiation dose distribution in most treated animals, the differences between megavoltage and kilovoltage X-ray beams were relatively small. The similar therapeutic effects of the kilovoltage and 6 MV X-ray beams suggest that kilovoltage X-ray beams may be effective alternatives to megavoltage X-ray beams in treating cancers in companion animals.
Abdomen
;
Animals
;
Brain
;
Brain Neoplasms
;
Friends
;
Hospitals, Animal
;
Humans
;
Nasal Cavity
;
Pets
;
Radiotherapy
;
Therapeutic Uses
5.Automated Determination of Prostate Depth for Planning in Proton Beam Treatment.
Minho CHEONG ; Myonggeun YOON ; Jinsung KIM ; Dong Ho SHIN ; Sung Yong PARK ; Se Byeong LEE
Korean Journal of Medical Physics 2009;20(3):180-190
Depth of prostate volume from the skin can vary due to intra-fractional and inter-fractional movements, which may result in dose reduction to the target volume. Therefore we evaluated the feasibility of automated depth determination-based adaptive proton therapy to minimize the effect of inter-fractional movements of the prostate. Based on the center of mass method, using three fiducial gold markers in the prostate target volume, we determined the differences between the planning and treatment stages in prostate target location. Thirty-eight images from 10 patients were used to assess the automated depth determination method, which was also compared with manually determined depth values. The mean differences in prostate target location for the left to right (LR) and superior to inferior (SI) directions were 0.9 mm and 2.3 mm, respectively, while the maximum discrepancies in location in individual patients were 3.3 mm and 7.2 mm, respectively. In the bilateral beam configuration, the difference in the LR direction represents the target depth changes from 0.7 mm to 3.3 mm in this study. We found that 42.1%, 26.3% and 2.6% of thirty-eight inspections showed greater than 1 mm, 2 mm and 3 mm depth differences, respectively, between the planning and treatment stages. Adaptive planning based on automated depth determination may be a solution for inter-fractional movements of the prostate in proton therapy since small depth changes of the target can significantly reduce target dose during proton treatment of prostate cancer patients.
Humans
;
Prostate
;
Prostatic Neoplasms
;
Proton Therapy
;
Protons
;
Skin
6.Automated Determination of Prostate Depth for Planning in Proton Beam Treatment.
Minho CHEONG ; Myonggeun YOON ; Jinsung KIM ; Dong Ho SHIN ; Sung Yong PARK ; Se Byeong LEE
Korean Journal of Medical Physics 2009;20(3):180-190
Depth of prostate volume from the skin can vary due to intra-fractional and inter-fractional movements, which may result in dose reduction to the target volume. Therefore we evaluated the feasibility of automated depth determination-based adaptive proton therapy to minimize the effect of inter-fractional movements of the prostate. Based on the center of mass method, using three fiducial gold markers in the prostate target volume, we determined the differences between the planning and treatment stages in prostate target location. Thirty-eight images from 10 patients were used to assess the automated depth determination method, which was also compared with manually determined depth values. The mean differences in prostate target location for the left to right (LR) and superior to inferior (SI) directions were 0.9 mm and 2.3 mm, respectively, while the maximum discrepancies in location in individual patients were 3.3 mm and 7.2 mm, respectively. In the bilateral beam configuration, the difference in the LR direction represents the target depth changes from 0.7 mm to 3.3 mm in this study. We found that 42.1%, 26.3% and 2.6% of thirty-eight inspections showed greater than 1 mm, 2 mm and 3 mm depth differences, respectively, between the planning and treatment stages. Adaptive planning based on automated depth determination may be a solution for inter-fractional movements of the prostate in proton therapy since small depth changes of the target can significantly reduce target dose during proton treatment of prostate cancer patients.
Humans
;
Prostate
;
Prostatic Neoplasms
;
Proton Therapy
;
Protons
;
Skin
7.Comparison of Helical TomoTherapy with Linear Accelerator Base Intensity-modulated Radiotherapy for Head & Neck Cases.
Dongwook KIM ; Myonggeun YOON ; Sung Yong PARK ; Se Byeong LEE ; Dong Ho SHIN ; Doohyeon LEE ; Jungwon KWAK ; Soah PARK ; Young Kyung LIM ; Jinsung KIM ; Jungwook SHIN ; Kwan Ho CHO
Korean Journal of Medical Physics 2008;19(2):89-94
TomoTherapy has a merit to treat cancer with Intensity modulated radiation and combines precise 3-D imaging from computerized tomography (CT scanning) with highly targeted radiation beams and rotating beamlets. In this paper, we comparing the dose distribution between TomoTherapy and linear accelerator based intensity modulated radiotherapy (IMRT) for 10 Head & Neck patients using TomoTherapy which is newly installed and operated at National Cancer Center since Sept. 2006. Furthermore, we estimate how the homogeneity and Normal Tissue Complication Probability (NTCP) are changed by motion of target. Inverse planning was carried out using CadPlan planning system (CadPlan R.6.4.7, Varian Medical System Inc. 3100 Hansen Way, Palo Alto, CA 94304-1129, USA). For each patient, an inverse IMRT plan was also made using TomoTherapy Hi-Art System (Hi-Art2_2_4 2.2.4.15, TomoTherapy Incorporated, 1240 Deming Way, Madson, WI 53717-1954, USA) and using the same targets and optimization goals. All TomoTherapy plans compared favorably with the IMRT plans regarding sparing of the organs at risk and keeping an equivalent target dose homogeneity. Our results suggest that TomoTherapy is able to reduce the normal tissue complication probability (NTCP) further, keeping a similar target dose homogeneity.
Head
;
Humans
;
Imaging, Three-Dimensional
;
Neck
;
Organs at Risk
;
Particle Accelerators
;
Radiotherapy, Intensity-Modulated

Result Analysis
Print
Save
E-mail