1.Ferroptosis and osteoporosis
Cheng YANG ; Weimin LI ; Dongcheng RAN ; Jiamu XU ; Wangxiang WU ; Jiafu XU ; Jingjing CHEN ; Guangfu JIANG ; Chunqing WANG
Chinese Journal of Tissue Engineering Research 2025;29(3):554-562
BACKGROUND:It has also been confirmed that ferroptosis is closely related to a variety of musculoskeletal diseases,such as rheumatoid arthritis,osteosarcoma,and osteoporosis.The pathophysiological mechanisms of ferroptosis and osteoporosis need to be further studied and elucidated to broaden our understanding of iron metabolism and osteoporosis.It will provide research ideas for the future elucidation of new mechanisms of osteoporosis and the development of new technologies and drugs for the treatment of osteoporosis. OBJECTIVE:To provide an overview of the current status of research on ferroptosis in osteoporosis,to provide a new direction for future research on the specific molecular mechanisms of osteoporosis,and to provide more effective and better options for osteoporosis treatment strategies. METHODS:The first author used the computer to search the literature published from 2000 to 2024 in CNKI,WanFang,VIP,and PubMed databases with search terms"ferroptosis,iron metabolism,osteoporosis,osteoblast,osteoclast,bone metabolism,signal pathway,musculoskeletal,review"in Chinese and English.A total of 68 articles were finally included according to the selection criteria. RESULTS AND CONCLUSION:(1)Ferroptosis is a new type of cell death discovered in recent years,which is usually accompanied by a large amount of iron accumulation and lipid peroxidation during cell death,and its occurrence is iron-dependent.This is distinctly different from several types of cell death that are currently being hotly studied(e.g.,cellular pyroptosis,necrotic apoptosis,cuproptosis,and autophagy).(2)Intracellular iron homeostasis is manifested as a balance between iron uptake,export,utilization,and storage.The body's iron regulatory system includes systemic and intracellular regulation.The main factor of systemic regulation is hepcidin produced by hepatic secretion,and cellular regulation depends on the iron regulatory protein/iron response element system.Of course,intracellular iron homeostasis can be controlled by other factors,such as hypoxia,cytokines,and hormones.(3)Lipid peroxidation causes oxidative damage to biological membranes(plasma membrane and internal organelle membranes),lipoproteins,and other lipid-containing molecules.Polyunsaturated fatty acid-containing phospholipids are important targets of lipid peroxidation.Free polyunsaturated fatty acid is an important substrate for lipid oxidation and can bind to the phospholipid bilayer,leading to over-oxidation and thus triggering lipid apoptosis.(4)Several studies have shown that osteoblasts are overloaded with iron in different ways,resulting in the accumulation of unstable ferrous iron and the generation of reactive oxygen species and lipid peroxides,causing ferroptosis of osteoblasts and ultimately a decrease in bone formation,affecting bone homeostasis and the development of osteoporosis.(5)Osteoclasts are large multinucleated cells formed by the fusion of mononuclear macrophage cell lines or bone marrow mesenchymal stem cells induced by nuclear factor-κB ligand receptor activator,and they have the function of bone resorption.Iron ions can promote osteoclast differentiation and bone resorption through the production of intracellular lipid reactive oxygen species,while iron chelators can inhibit osteoclast formation in vitro and thus affect the occurrence and development of osteoporosis.
2.Regulation of Signaling Pathways Related to Myocardial Infarction by Traditional Chinese Medicine: A Review
Wenjun WU ; Chidao ZHANG ; Jingjing WEI ; Xue LI ; Bin LI ; Xinlu WANG ; Mingjun ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):321-330
The pathological changes of myocardial infarction (MI) are mainly characterized by progressive myocardial ischemic necrosis, decline in cardiac diastolic function, thinning of the ventricular wall, and enlargement of the ventricles. The clinical manifestations include myocardial ischemia, heart failure, arrhythmia, shock, and even sudden cardiac death, rendering MI one of the most perilous cardiovascular diseases. Currently, the clinical treatment for MI primarily involves interventional procedures and drug therapy. However, due to their significant side effects and high complication rates associated with these treatments, they fail to ensure a satisfactory quality of life and long-term prognosis for patients. On the other hand, traditional Chinese medicine has demonstrated remarkable potential in improving patient prognosis while reducing side effects. Research has elucidated that various signaling pathways such as nuclear transcription factor-κB (NF-κB), adenosine 5̒-monophosphate-activated protein kinase (AMPK), transforming growth factor-β (TGF-β)/Smads, mitogen-activated protein kinase (MAPK), Wnt/β-catenin (β-catenin), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B(Akt) play crucial roles in regulating the occurrence and development of MI. Effectively modulating these signaling pathways through its therapeutic interventions, traditional Chinese medicine can enhance MI management by inhibiting apoptosis, providing anti-inflammatory properties, alleviating oxidative stress levels, and resisting myocardial ischemia. Due to its notable efficacy and favorable safety, it has become an area of focus in clinical practice.
3.Traditional Chinese Medicine Intervention in Depression Based on Signaling Pathway Regulation: A Review
Jinjiang XU ; Li WU ; Qi ZHANG ; Yasheng DENG ; Jingjing XIE ; Haobin CHEN ; En ZHAO ; Man ZHANG ; Jianye DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):319-328
Depression is a common psychiatric disorder characterized by persistent low mood or mental disorders. Current treatments primarily focus on regulating neurotransmitter levels, but their effectiveness is limited. The mechanisms underlying its onset are complex, and there is no unified consensus. Abnormal signaling pathway transmission plays a crucial role in the development of depression, involving multiple pathways, including Toll-like receptor 4/nucleotide-binding oligomerization domain-like receptor protein 3 (TLR4/NLRP3), nuclear factor-κB (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), brain-derived neurotrophic factor/tyrosine kinase receptor B (BDNF/TrkB), cyclic AMP/protein kinase A/cAMP response element-binding protein (cAMP/PKA/CREB), and others. Traditional Chinese medicine(TCM) is based on a holistic approach and the principle of treatment based on the differentiation of syndromes, regulating the balance of multiple systems and organ functions from a macroscopic perspective. This approach has shown unique advantages in the treatment of depression. TCM attributes the onset of depression to dysfunction of the organ systems, involving liver Qi stagnation, heart spirit deficiency, kidney essence depletion, and spleen dysfunction. TCM compound treatments focus on soothing the liver, strengthening the spleen, calming the heart, and replenishing essence, with formulas such as Xiaoyaosan, Zishui Qinggan Yin, and Chahu Jia Guizhi Longgu Muli Tang. The active components of Chinese herbs mainly aim to tonify and regulate Qi, such as salidroside, ginsenoside Rb1, astragaloside, and muscone. External TCM treatments, primarily acupuncture, aim to open the orifices and invigorate the spirit. Acupoints such as Baihui, Shenting, and Yintang are commonly used. Additionally, massage and moxibustion therapy can intervene in depression by regulating signaling pathways. This article reviews the core role of signaling pathways in the development of depression and the mechanism of TCM regulation of signaling pathways to intervene in depression, aiming to discover new therapeutic approaches that can improve the symptoms of depressed patients.
4.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
5.Research on the reconstruction of doctor-patient relationships in patients with sudden deafness from the perspective of narrative medicine
Jingjing LI ; XiaoHui KOU ; Hui LYU ; Aling ZHANG ; Hui YANG ; Weijun MA ; Jiayi WANG ; Caiqin WU
Chinese Medical Ethics 2025;38(6):718-726
Patients with sudden deafness encounter greater psychological challenges and communication barriers after experiencing sudden hearing loss, and traditional medical models often fail to adequately address their unique needs. This paper analyzed the current situation of emotional and behavioral changes in patients with sudden deafness, and the gap between their expectations and the reality of medical care. From the perspective of narrative medicine, the theory and characteristics of the reconstruction of the doctor-patient relationships in patients with sudden deafness were explored. The results showed that narrative medicine can enhance patients’ emotional resonance and understanding, improve the efficiency and quality of doctor-patient communication, promote the formulation of personalized treatment plans, and enhance treatment adherence and satisfaction. Based on these results, strategies and pathways for the reconstruction of doctor-patient relationships for patients with sudden deafness were proposed, including building empathetic bridges and tapping into mechanisms of emotional resonance within narrative medicine; optimizing communication strategies and promoting the application of narrative techniques in doctor-patient dialogues; connecting narrative pathways and advocating the exploration of stories and strategies in personalized treatments; as well as facilitating treatment adherence and making full use of the psychodynamic effects of narrative medicine. Narrative medicine, as a patient-centered medical practice, can effectively promote the reconstruction of doctor-patient relationships, enhance treatment effectiveness, and offer a more humane treatment experience for patients.
6.Establishment of Psoriasis Rat Model with Spleen Deficiency and Dampness Obstruction Syndrome Induced by External Dampness Factors
Yating ZHANG ; Haojie SU ; Fanlu LIU ; Panyu ZHOU ; Qing WANG ; Junhong ZHANG ; Jingjing WU ; Ling HAN
Journal of Traditional Chinese Medicine 2025;66(13):1369-1377
ObjectiveTo construct a rat model of psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type), and evaluate the macroscopic manifestations and microscopic indicators of the model. MethodsTwenty-two SD rats were divided into normal group (n=3), common psoriasis group (n=5), spleen deficiency and dampness obstruction syndrome (external dampness type) group (n=7), and psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type) group (n=7). The spleen deficiency and dampness obstruction syndrome (external dampness type) rat model was established through 32-week exposure to an artificially simulated high-humidity environment, while the common psoriasis model was developed via 7-day topical application of imiquimod cream, and these two approaches were combined to construct a composite model of psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type). Rats in the normal group were housed under normal humidity conditions. The general state, tongue manifestation of rats were observed to evaluate the macroscopic syndrome manifestations; the microscopic syndrome manifestations of rats were evaluated through adipose tissue and liver tissue changes; the severity of psoriasis in rats was evaluated through skin pathological changes, psoriasis area and severity index (PASI), proliferating cell nuclear antigen (PCNA) expression and spleen tissue changes; changes in rat CD4+ interferon-γ+ cells (CD4+IFN-γ+ cells), CD4+ tumour necrosis factor-α+ cells (CD4+ TNF-α+ cells), and forkhead framing protein P3+ regulatory T cells (CD3+CD4+FoxP3+ Treg cells) were detected by flow cytometry. ResultsMacroscopically, both the spleen deficiency and dampness obstruction syndrome (external dampness type) group and psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type) group exhibited manifestations of spleen deficiency and dampness obstruction, including lethargy, huddling behavior, dull and disheveled fur, as well as soft or loose stools and perianal soiling in some individuals; both these two groups displayed enlarged tongue, swollen, and moist tongue texture, accompanied by slippery tongue surface. Microscopically, compared to the common psoriasis group, the psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type) group showed increased epididymal fat index (P<0.05); compared to the normal group and spleen deficiency and dampness obstruction syndrome (external dampness type) group, the psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type) group demonstrated significantly elevated spleen mass (P<0.05), while hepatic gross morphology and HE staining revealed no significant histopathological changes across all groups. Dorsal skin lesions were markedly exacerbated in the psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type) group when compared to those in common psoriasis group. Both the common psoriasis group and psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type) group exhibited significantly higher erythema scores, scaling scores, infiltration scores, PASI total scores, and proportions of CD3+CD4+FoxP3+Treg cells compared to the normal group and spleen deficiency and dampness obstruction syndrome (external dampness type) group (P<0.05), with pronounced PCNA-positive expression observed in the epidermal basal layer and dermis; the psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type) group displayed significantly increased proportions of CD4+TNF-α+cells compared to the spleen deficiency and dampness obstruction syndrome (external dampness type) group (P<0.05); whereas no significant differences were detected in CD4+IFN-γ+cell proportions among groups (P>0.05). ConclusionThe rat model of psoriasis with spleen deficiency and dampness obstruction syndrome (external dampness type) can be successfully constructed by artificially simulating a high-humidity environment combined with imiquimod induction.
7.Simultaneous determination of four thiol derivatives in workplace air by gas chromatography
Ruibo MENG ; Jing YUAN ; Jiawen HU ; Jiaheng HE ; Jingjing QIU ; Zuokan LIN ; Ziqun ZHANG ; Weifeng RONG ; Banghua WU
China Occupational Medicine 2025;52(2):188-192
Objective To establish a method for simultaneous determination of four high-molecular-weight thiol derivatives (TDs) in workplace air by gas chromatography. Methods The four kinds of vapor-phase macromolecular TDs (1-pentanethiol, 1-hexanethiol, 1-benzyl mercaptan, and n-octanethiol) in the workplace air were collected using the GDH-1 air sampling tubes, desorbed with anhydrous ethanol, separated on a DB-FFAP capillary column, and determined by flame ionization detector. Results The quantitation range of the four TDs was 0.30-207.37 mg/L, with the correlation coefficients greater than 0.999 00. The minimum detection mass concentrations and minimum quantitation mass concentrations were 0.18-0.32 and 0.60-1.05 mg/m3, respectively (both calculated based on the 1.5 L sample and 3.0 mL desorption solvent). The mean desorption efficiencies ranged from 87.07% to 103.59%. The within-run and between-run relative standard deviations were 1.92%-8.22% and 1.89%-8.45%, respectively. The samples can be stored at room temperature or 4 ℃ for three days and up to 7 days at -18 ℃. Conclusion This method is suitable for the simultaneous determination of four vapor-phase TDs in workplace air.
8.Effect of Mori Folium-Ginseng Radix et Rhizoma on Glucose and Lipid Metabolism and Mechanism in Mouse Model of Type 2 Diabetes Mellitus
Congyi LIU ; Ning WANG ; Jingjing XU ; Tingting WANG ; Na ZHENG ; Zimeng HUANG ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):20-28
ObjectiveTo study the effect of the herb pair Mori Folium-Ginseng Radix et Rhizoma (HMG) on glucose and lipid metabolism in the mouse model of type 2 diabetes mellitus and decipher the possible treatment mechanism. MethodsThe db/db mice were chosen as the mouse model of type 2 diabetes mellitus and then treated with HMG at low and high doses (1.56, 3.12 g∙kg-1, respectively) or metformin (0.26 g∙kg-1) by gavage for 6 weeks. The normal group and the model group were treated with double distilled water at the same time according to body weight. The 8-h fasting blood glucose and body weight were measured once a week. The oral glucose tolerance test (OGTT) was conducted at the 6th week of dosing. The mice were sacrificed after the end of dosing. Serum levels of lipids [total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL)], liver function indicators [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)], non-esterified fatty acids (NEFA), glycosylated serum protein (GSP), serum glucose (GLU), fasting insulin (FINS), and renal function indicators [creatinine (Crea) and blood urea nitrogen (BUN)] were measured by enzyme-linked immunosorbent assay. The protein levels of peroxidase proliferator-activating receptor gamma (PPARγ), acetyl coenzyme A carboxylase (ACC), and sterol regulatory element-binding protein-1 (SREBP-1) were determined by Western blot. The pathological changes in the liver and pancreas were examined. ResultsCompared with the normal group, the model group presented increased body weight, elevated levels of blood glucose, TG, TC, AST, ALT, GLU, NEFA, GSP, and HDL-C, up-regulated protein levels of ACC and SREBP-1, and down-regulated protein level of PPARγ (P<0.01). Meanwhile, the model group presented a large amount of lipid droplets and steatosis in the liver, as well as karyopyknosis and lymphocyte infiltration in the pancreas. Compared with the model group, the high- and low-dose HMG groups showed decreased body weight, declined levels of blood glucose, TG, TC, AST, ALT, GLU, NEFA, and GSP, and elevate level of HDL-C (P<0.05, P<0.01). Moreover, the two groups showcased reduced lipid droplets and steatosis in the liver, as well as enlarged islets with clear boundaries and alleviated lymphocyte infiltration and karyopyknosis. Western blot results showed that the high-dose herb pair group demonstrated down-regulated protein levels of ACC and SREBP-1 and up-regulated protein level of PPARγ (P<0.01). ConclusionThe HMG can effectively improve the glucose and lipid metabolism in db/db mice by regulating the expression of PPARγ, SREBP-1, and ACC.
9.Effect of Mori Folium-Ginseng Radix et Rhizoma on Glucose and Lipid Metabolism and Mechanism in Mouse Model of Type 2 Diabetes Mellitus
Congyi LIU ; Ning WANG ; Jingjing XU ; Tingting WANG ; Na ZHENG ; Zimeng HUANG ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):20-28
ObjectiveTo study the effect of the herb pair Mori Folium-Ginseng Radix et Rhizoma (HMG) on glucose and lipid metabolism in the mouse model of type 2 diabetes mellitus and decipher the possible treatment mechanism. MethodsThe db/db mice were chosen as the mouse model of type 2 diabetes mellitus and then treated with HMG at low and high doses (1.56, 3.12 g∙kg-1, respectively) or metformin (0.26 g∙kg-1) by gavage for 6 weeks. The normal group and the model group were treated with double distilled water at the same time according to body weight. The 8-h fasting blood glucose and body weight were measured once a week. The oral glucose tolerance test (OGTT) was conducted at the 6th week of dosing. The mice were sacrificed after the end of dosing. Serum levels of lipids [total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL)], liver function indicators [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)], non-esterified fatty acids (NEFA), glycosylated serum protein (GSP), serum glucose (GLU), fasting insulin (FINS), and renal function indicators [creatinine (Crea) and blood urea nitrogen (BUN)] were measured by enzyme-linked immunosorbent assay. The protein levels of peroxidase proliferator-activating receptor gamma (PPARγ), acetyl coenzyme A carboxylase (ACC), and sterol regulatory element-binding protein-1 (SREBP-1) were determined by Western blot. The pathological changes in the liver and pancreas were examined. ResultsCompared with the normal group, the model group presented increased body weight, elevated levels of blood glucose, TG, TC, AST, ALT, GLU, NEFA, GSP, and HDL-C, up-regulated protein levels of ACC and SREBP-1, and down-regulated protein level of PPARγ (P<0.01). Meanwhile, the model group presented a large amount of lipid droplets and steatosis in the liver, as well as karyopyknosis and lymphocyte infiltration in the pancreas. Compared with the model group, the high- and low-dose HMG groups showed decreased body weight, declined levels of blood glucose, TG, TC, AST, ALT, GLU, NEFA, and GSP, and elevate level of HDL-C (P<0.05, P<0.01). Moreover, the two groups showcased reduced lipid droplets and steatosis in the liver, as well as enlarged islets with clear boundaries and alleviated lymphocyte infiltration and karyopyknosis. Western blot results showed that the high-dose herb pair group demonstrated down-regulated protein levels of ACC and SREBP-1 and up-regulated protein level of PPARγ (P<0.01). ConclusionThe HMG can effectively improve the glucose and lipid metabolism in db/db mice by regulating the expression of PPARγ, SREBP-1, and ACC.
10.Investigation and analysis of the current status and challenges in importing rare disease drugs in China
Jingjing WU ; Qinning SU ; Xueyi TAO ; Yufei YANG ; Ningying MAO
China Pharmacy 2025;36(17):2097-2101
OBJECTIVE To analyze the current status and challenges in importing rare disease drugs in China, providing references for optimizing the import process and improving relevant policies. METHODS Questionnaires and interviews were conducted with stakeholders involved in rare disease drug importation, including government departments, multinational pharmaceutical enterprises, healthcare institutions, and patient organizations. This explored the current situation and challenges encountered by each party. Expert opinions were synthesized to propose improvement suggestions. RESULTS A questionnaire survey of representatives from 25 multinational pharmaceutical companies in the rare disease field revealed that these companies had a strong willingness to import rare disease drugs, with 58.33% of them practicing diverse import models. However, significant challenges hindered this process, including unclear regulations (54.17%), complex approval procedures (45.83%), and excessively long approval cycles (41.67%), negatively impacting their motivation. Meanwhile, interviews with 13 experts from government departments, healthcare institutions, pharmaceutical enterprises, and patient organizations identified deficiencies in policy design, approval processes, sampling inspection costs, and communication efficiency with regulators. Additionally, the drug import model in special medical zones also required improvement. CONCLUSIONS The importation of rare disease drugs in China faces challenges such as incomplete policies, inflexible regulatory mechanisms, and insufficient communication channels. It is recommended to enhance the rare disease definition criteria, optimize import incentive policies, and refine regulatory models, so as to further optimize the import process of rare disease drugs and improve relevant policies.

Result Analysis
Print
Save
E-mail