1.Mechanism of Lijin manipulation regulating scar formation in skeletal muscle injury repair in rabbits
Kaiying LI ; Xiaoge WEI ; Fei SONG ; Nan YANG ; Zhenning ZHAO ; Yan WANG ; Jing MU ; Huisheng MA
Chinese Journal of Tissue Engineering Research 2025;29(8):1600-1608
BACKGROUND:Lijin manipulation can promote skeletal muscle repair and treat skeletal muscle injury.However,the formation of fibrosis and scar tissue hyperplasia are closely related to the quality of skeletal muscle repair.To study the regulatory effect of Lijin manipulation on the formation of fibrosis and scar tissue hyperplasia is helpful to explain the related mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury. OBJECTIVE:To explore the mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury in rabbits,thereby providing a scientific basis for clinical treatment. METHODS:Forty-five healthy adult Japanese large-ear white rabbits were randomly divided into blank group,model group and Lijin group,with 15 rats in each group.Gastrocnemius strike modeling was performed in both model group and Lijin group.The Lijin group began to intervene with tendon manipulation on the 3rd day after modeling,once a day,and 15 minutes at a time.Five animals in each group were killed on the 7th,14th and 21st days after modeling.The morphology and inflammatory cell count of gastrocnemius were observed by hematoxylin-eosin staining,the collagen fiber amount was observed by Masson staining,the expression of interleukin-6 and interleukin-10 in gastrocnemius was detected by ELISA.The protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin,alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen were detected by western blot and RT-PCR,respectively,and the expression of type Ⅰ collagen protein was detected by immunohistochemistry. RESULTS AND CONCLUSION:Hematoxylin-eosin staining and Masson staining showed that compared with the model group,inflammatory cell infiltration and collagen fiber content decreased in the Lijin group(P<0.01),and the muscle fibers gradually healed.ELISA results showed that compared with the model group,the expression of interleukin-6 in the Lijin group continued to decrease(P<0.05),and the expression of interleukin-10 increased on the 7th day after modeling(P<0.05)and then showed a decreasing trend(P<0.05).Western blot and RT-PCR results showed that compared with the model group,the protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin in the Lijin group were significantly increased on the 14th day after modeling(P<0.05),but decreased on the 21st day(P<0.05);the protein and mRNA expressions of alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen in the Lijin group were significantly decreased compared with those in the model group(P<0.05).Immunohistochemical results showed that the expression of type Ⅰ collagen in the Lijin group was significantly lower than that in the model group(P<0.05).To conclude,Lijin manipulation could improve the repair quality of skeletal muscle injury by inhibiting inflammation,promoting the proliferation and differentiation of muscle satellite cells,and reducing fibrosis.
2.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
3.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
4.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
8.A Review of Research Status for the Anti-tumor Mechanism of Shanxian Granule
Jing WEI ; Han ZHOU ; Xiao-Ya WANG ; Yuan LI ; Xiao-Ping YING ; Yan FANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):809-814
In this article,the mechanism of Shanxian Granule in inhibiting liver cancer,lung cancer,sarcoma,melanoma and other tumors was reviewed,with a view to providing a theoretical basis for the clinical research of Shanxian Granules in the treatment of malignant tumors.Shanxian Granule are the pure Chinese medicine preparation for counteracting malignant tumor developed by the Oncology Research Team of Shaanxi University of Chinese Medicine on the basis of the theory of traditional Chinese medicine syndrome differentiation and treatment combined with decades of clinical experience as well as the achievements of modern pharmacological research.Shanxian Granule are mainly composed of Crataegi Fructus,Agrimoniae Herba,Panacis Quinquefolii Radix,Curcumae Rhizoma,Testudinis Carapax et Plastrum,Trionycis Carapax,Corydalis Rhizoma,and Polyporus,and have the actions of benefiting qi and nourishing yin,supporting healthy-qi and cultivating the essence,activating blood and removing stasis,and eliminating swelling and counteracting cancer.The compatibility of Shanxian Granule embodies the principle of supporting healthy-qi but avoiding maintaining pathogens,and eliminating pathogens but avoiding injuring healthy-qi.The granules can effectively inhibit the growth and metastasis of liver cancer,lung cancer,sarcoma,melanoma and other tumors both in vivo and in vitro,alleviate the clinical symptoms of tumor patients,and improve their prognosis.The anti-tumor mechanism of Shanxian Granules is related to the enhancement of body immune function,inhibition of tumor cell proliferation,enhancement of tumor cell apoptosis,inhibition of tumor cell invasion and metastasis as well as the tumor angiogenesis.
9.Expression of BCL7A in hepatocellular carcinoma and its effects on prognosis, invasion and migration of hepatocellular carcinoma
Jiawei JIANG ; Wei HUANG ; Jing CHEN ; Tao MA ; Han XUAN ; Yang YAN ; Ruochun WANG ; Jinxia LIU
Chinese Journal of Hepatobiliary Surgery 2024;30(1):56-61
Objective:To analyze the expression and prognosis of B-cell lymphoma 7 protein family member A (BCL7A) in hepatocellular carcinoma, as well as the effect and mechanism of BCL7A expression on the invasion and migration of hepatocellular carcinoma cells.Methods:The cancer tissues and adjacent tissues of 40 patients with hepatocellular carcinoma who underwent radical hepatobiliary resection in the Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University from November 2017 to March 2018 were prospectively collected for protein extraction, including 29 males and 11 females, aged (58.5±10.4) years. The information of 374 cases of hepatocellular carcinoma and 50 cases of adjacent tissues were downloaded from The Cancer Genome Atlas (TCGA) database, and the hepatocellular carcinoma cell lines Hep3B and SMMC-7721 were transfected with overexpressing BCL7A plasmid and empty vector plasmid (negative control), respectively. Western blotting and immunohistochemistry were used to detect the expression of BCL7A, and Western blotting was also used to detect the expression of proteins related to epithelial-mesenchymal transition (N-cadherin, E-cadherin, snail). Transwell and cell scratch assays were used to detect cell invasion and migration.Results:Compared with adjacent tissues, the mRNA expression of BCL7A in 50 patients with hepatocellular carcinoma in TCGA was significantly increased ( t=13.38, P<0.001). According to the median mRNA expression level of BCL7A, 374 patients were divided into BCL7A high expression group ( n=187) and low expression group ( n=187), and the cumulative survival rate of BCL7A high expression patients was lower than that of low expression group, and the difference was statistically significant ( χ2=6.95, P=0.009). Western blot was used to detect the relative expression of BCL7A protein in cancer tissues, and found it was higher compared to adjacent tissues. Compared with the negative control group, the number of cells invaded by the BCL7A overexpression group of hepatoma cells Hep3B and SMMC-7721 was more than the negative control group respectively, (153.7±1.3) vs (63.7±4.7) and (307.7±25.14) vs (72.3±12.5), and the differences were statistically significant ( t=7.97, 8.38, both P=0.001) .The results of the cell scratch assay were consistent with the results of the Transwell invasion assay. The expressions of N-cadherin and snail in the BCL7A overexpression group were higher than those in the negative control group, and the E-cadherin was lower, and the difference was statistically significant (all P<0.05). Conclusions:The expression of BCL7A in cancer tissues of patients with hepatocellular carcinoma is elevated and is associated with poor prognosis. BCL7A may promote hepatocellular carcinoma cell metastasis and invasion by promoting epithelial-mesenchymal transition.
10.The role of glucose metabolism reprogramming and its targeted therapeutic agents in inflammation-related diseases
Yi WEI ; Xiao-man JIANG ; Shi-lin XIA ; Jing XU ; Ya LI ; Ran DENG ; Yan WANG ; Hong WU
Acta Pharmaceutica Sinica 2024;59(3):511-519
Cells undergo glucose metabolism reprogramming under the influence of the inflammatory microenvironment, changing their primary mode of energy supply from oxidative phosphorylation to aerobic glycolysis. This process is involved in all stages of inflammation-related diseases development. Glucose metabolism reprogramming not only changes the metabolic pattern of individual cells, but also disrupts the metabolic homeostasis of the body microenvironment, which further promotes aerobic glycolysis and provides favourable conditions for the malignant progression of inflammation-related diseases. The metabolic enzymes, transporter proteins, and metabolites of aerobic glycolysis are all key signalling molecules, and drugs can inhibit aerobic glycolysis by targeting these specific key molecules to exert therapeutic effects. This paper reviews the impact of glucose metabolism reprogramming on the development of inflammation-related diseases such as inflammation-related tumours, rheumatoid arthritis and Alzheimer's disease, and the therapeutic effects of drugs targeting glucose metabolism reprogramming on these diseases.

Result Analysis
Print
Save
E-mail