1.Construction of A Nomogram Prognostic Model Based on Pretreatment Inflammatory Indicator for Esophageal Squamous Cell Carcinoma Patients Treated with Radical Radiotherapy
Shenbo FU ; Long JIN ; Jing LIANG ; Junjun GUO ; Yu CHE ; Chenyang LI ; Yong CHEN
Cancer Research on Prevention and Treatment 2025;52(2):142-150
Objective To describe the significance of the pretreatment inflammatory indicators in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after undergoing radical radiotherapy. Methods The data of 246 ESCC patients who underwent radical radiotherapy were retrospectively collected. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values for platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII). The Kaplan-Meier method was used for survival analysis. We conducted univariate and multivariate analyses by using the Cox proportional risk regression model. Software R (version 4.2.0) was used to create the nomogram of prognostic factors. Results The results of the ROC curve analysis showed that the optimal cutoff values of PLR, NLR, and SII were 146.06, 2.67, and 493.97, respectively. The overall response rates were 77.6% and 64.5% in the low and high NLR groups, respectively (P<0.05). The results of the Kaplan-Meier survival analysis revealed that the prognosis of patients in the low PLR, NLR, and SII group was better than that of patients in the high PLR, NLR, and SII group (all P<0.05). The results of the multivariate Cox regression analysis showed that gender, treatment modalities, T stage, and NLR were independent factors affecting the overall survival (OS). In addition, T stage and NLR were independent factors affecting the progression-free survival (PFS) (all P<0.05). The nomogram models of OS and PFS prediction were established based on multivariate analysis. The C-index values were 0.703 and 0.668. The calibration curves showed excellent consistency between the predicted and observed OS and PFS. Conclusion The pretreatment values of PLR, NLR, and SII are correlated with the prognosis of patients with ESCC who underwent radical radiotherapy. Moreover, NLR is an independent factor affecting the OS and PFS of ESCC patients. The NLR-based nomogram model has a good predictive ability.
2.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Pathophysiological Evolution and Syndrome-Based Stratified Treatment of Qi Deficiency with Stagnation in Chemotherapy-Induced Myelosuppression
Jing LONG ; Hengzhou LAI ; Wenbo HUANG ; Feng YU ; Yifang JIANG ; Zhuoling DAI ; Chong XIAO ; Fengming YOU
Journal of Traditional Chinese Medicine 2025;66(11):1109-1113
The concept of "qi deficiency with stagnation" refers to a pathological state characterized by the depletion of primordial qi, impaired qi transformation, and the development of internal stagnation. Under the cyclic chemotherapy regimen in oncology, chemotherapy-induced myelosuppression follows a progressive pathological course from qi deficiency to increasing stagnation. This sequential evolution from mild to severe myelosuppression closely aligns with the dynamic syndrome differentiation and treatment framework of "qi deficiency with stagnation". "Qi deficiency" reflects the gradual depletion of qi, blood, and essence, while "stagnation" refers to the accumulation of phlegm, turbid dampness, and blood stasis. These two components interact reciprocally, forming a vicious cycle where deficiency leads to stagnation, and stagnation further damages the healthy qi. In the early stage of mild myelosuppression, chemotoxicity begins to accumulate in the bone marrow, leading to qi consumption, blood deficiency, yin injury, and the gradual formation of turbid phlegm and damp stagnation. In the advanced stage of severe myelosuppression, the accumulation of toxicity causes qi sinking, exhaustion of essence, and marrow depletion, along with blood stasis obstructing the collaterals. Treatment strategies should be based on syndrome differentiation, with an emphasis on assessing the severity of the condition, balancing deficiency and excess, and achieving both symptomatic relief and root cause resolution.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
8.Progress of active ingredients of natural drugs and their mechanism of antiviral actions
Jian WANG ; Ping-ping ZHANG ; Jian YU ; Jing-long WANG ; Qing-hua CUI
Acta Pharmaceutica Sinica 2024;59(4):853-865
Human viral respiratory disease is a kind of widely prevalent infectious disease. The incidence rate of respiratory virus infection occupies a major position in the overall structure of global incidence rate of residents, and is one of the main causes of acute and fatal human diseases. Natural products have diverse structures and novel mechanisms of action, which can regulate body immunity and resist respiratory viruses, and have unique advantages in the treatment of respiratory viral diseases. This article summarizes the current research progress of natural drugs in the prevention and treatment of respiratory viruses, classifies the action mechanism of the active components of natural drugs against respiratory viruses, to provide reference basis for clinical treatment and drug discovery of respiratory diseases in the future.
9.Phenolic constituents of Sanguisorba officinalis and their Nrf2 agonistic effect
Long-long WU ; Jing-wen LIU ; Zhong-lian YU ; Liu-qiang ZHANG ; Yi-ming LI
Acta Pharmaceutica Sinica 2024;59(1):170-182
Thirty-one phenolic constituents were isolated and purified from the 95% ethanol extract of Sanguisorbae Radix by using various chromatographic techniques, including macroporous resin, silica gel, ODS, Sephadex LH-20 and semi-preparative HPLC. Their structures were elucidated by physicochemical properties, spectroscopic data (MS and NMR) and electronic circular dichroism (ECD) spectra, and identified as 3-methoxyl-2
10.Dapagliflozin alleviates the damage of renal tubular epithelial cells induced by high glucose by regulating miR-98-5p
Cong QI ; Long-Yong ZHANG ; Nan CHEN ; Yuan-Yu WU ; Jing ZHANG ; Ya-Wei ZHAO
The Chinese Journal of Clinical Pharmacology 2024;40(15):2192-2196
Objective To investigate the effect of dapagliflozin-mediated miR-98-5p on high glucose-induced damage in human renal tubular epithelial cells.Methods Blood samples from patients with diabetic nephropathy(DN)and healthy individuals were collected.The expression of serum miR-98-5p was detected by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR),and kidney injury-related indicators were measured using a biochemical immunoassay analyzer.HK-2 cells were cultured in vitro and randomly divided into control group(5 mmol·L-1 glucose),HG group(30 mmol·L-1 glucose),experimental-L group(30 mmol·L-1 glucose+20 μmol·L-1 dapagliflozin),experimental-H group(30 mmol·L-1 glucose+40 μmol·L-1 dapagliflozin),anti-miR-NC group(transfected with anti-miR-NC+30 mmol·L-1 glucose+40 μmol·L-1 dapagliflozin),and anti-miR-98-5p group(transfected with anti-miR-98-5p+30 mmol·L-1 glucose+40 μmol·L-1 dapagliflozin).Cell viability was evaluated using the cell counting kit 8(CCK-8)assay 24 hours after drug treatment;miR-98-5p expression in cells was detected by RT-qPCR;cell apoptosis rate was measured by flow cytometry,apoptosis-related protein expression was detected by Western blot;and inflammatory cytokine expression was measured by enzyme-linked immunosorbent assay.Results The expression levels of miR-98-5p in the serum of DN patients and healthy individuals were 1.00±0.25 and 0.39±0.05,respectively,showing a significant difference between the two groups(P<0.05).The expression levels of miR-98-5p in the control group,HG group,experimental-H group,anti-miR-NC group,and anti-miR-98-5p group were 1.00±0.09,0.31±0.04,0.72±0.06,0.75±0.07 and 0.22±0.03;the cell survival rates were(100.00±3.36)%,(51.63±5.89)%,(79.46±9.90)%,(82.88±5.71)%and(59.69±7.43)%;apoptosis rates were(3.52±0.20)%,(35.80±3.67)%,(16.43±1.57)%,(15.71±1.42)%and(29.37±2.18)%;tumor necrosis factor-α(TNF-α)levels were(22.46±1.67),(68.37±6.05),(34.45±2.47),(35.11±2.84)and(60.46±3.56)pg·mL-1,respectively.The differences among these indicators were all statistically significant when comparing the HG group to the control group,the experimental-H group to the HG group,and the anti-miR-98-5p group to the anti-miR-NC group(all P<0.05).Conclusion Dapagliflozin can alleviate high glucose-induced HK-2 cell damage by upregulating the expression of miR-98-5p,inhibiting inflammation,and reducing cell apoptosis.

Result Analysis
Print
Save
E-mail