1.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
2.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Detection of 14 sulfonate esters impurities of active pharmaceutical ingredients based on GC-MS/MS and LC-MS/MS
Die LIU ; Xiao-xiao PENG ; Jing-mei FANG ; Fan YANG ; Fang HE ; Min CHEN ; Lan LIN ; Guo-wei WANG
Acta Pharmaceutica Sinica 2024;59(2):424-431
Two methods including gas chromatography tandem mass spectrometry (GC-MS/MS) and high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) were established to detect common alkyl sulfonates and aryl sulfonates genotoxic impurities. Four alkyl sulfonates and methyl benzenesulfonate were determined by GC-MS/MS using butyl methanesulfonate as the internal standard, the chromatographic column was HP-5MS UI (30 mm × 0.25 mm, 0.25 µm), the carrier gas was helium, the flow rate was 1.0 mL·min-1 in a constant flow mode, the sample inlet temperature was set to 250 ℃, the split ratio was 10∶1, and the initial temperature of the heating program was 80 ℃, maintained for 1 minute, and then increased to 240 ℃ at a heating rate of 30 ℃·min-1 for 2 minutes. The mass spectrometry detector was an electron bombardment ion source (EI source), the data collection condition was multi reaction monitoring mode (MRM), and method validation using the raw material of clinical drug citalopram hydrobromide as a sample. The results showed that the linear range of four alkyl sulfonates and methyl benzenesulfonate were good at 3-50 ng·mL-1 and 9-150 ng·mL-1, with a correlation coefficient of
7.The Development of Chinese Herbal Formulae for Non-severe COVID-19 Based on Artificial Intelligence Technology and Investigation of Its Action Mechanisms
Wenting HUANG ; Liansheng QIAO ; Di YAN ; Tengwen LIU ; Hongmei CAO ; Hongyan GUO ; Zhi ZHANG ; Jing CHENG ; Lan XIE ; Qingquan LIU
Journal of Traditional Chinese Medicine 2024;65(1):103-112
ObjectiveTo develop traditional Chinese medicine (TCM) formulae for the treatment of nonsevere coronavirus disease 2019 (COVID-19) and to explore its anti-inflammatory mechanism. MethodsThe dysregulated signaling pathways were determined in macrophages from bronchoalveolar lavage fluid of COVID-19 patients and in lung epithelial cells infected with SARS-CoV-2 in vitro based on transcriptome analysis. A total of 102 TCM formulae for the clinical treatment of nonsevere COVID-19 were collected through literature. The pathway-reversing rates of these formulae in macrophages and lung epithelial cells were evaluated based on signature signaling pathways, and the basic formula was determined in conjunction with TCM theory. The commonly used Chinese materia medica for nonsevere COVID-19 were summarized from the 102 TCM formulae as abovementioned. And together with the screening results from the Pharmacopoeia of the People's Republic of China, a “Chinese materia medica pool” was esta-blished for the development of TCM formulae for COVID-19. The regulatory effects of each herb on signaling pathways were obtained based on targeted transcriptome analysis. Oriented at reversing dysregulated signaling pathways of COVID-19, the calculation was carried out, and the artificial intelligent methods for compositing formulae, that are exhaustive method and parallel computing, were used to obtain candidate compound formulas. Finally, with reference to professional experience, an innovative formula for the treatment of nonsevere COVID-19 was developed. The ethanol extract of the formula was evaluated for its anti-inflammatory effects by detecting the mRNA expression of interleukin 1b (Il1b), C-X-C motif chemokine ligand 2 (Cxcl2), C-X-C motif chemokine ligand 10 (Cxcl10), C-C motif chemokine ligand 2 (Ccl2), nitric oxide synthase 2 (Nos2), and prostaglandin-endoperoxide synthase 2 (Ptgs2) using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in RAW264.7 cells treated with lipopolysaccharide (LPS). ResultsIn macrophages and lung epithelial cells, 34 dysregulated signaling pathways associated with COVID-19 were identified respectively. The effects of the 102 formulae for clinical treatment of nonsevere COVID-19 were evaluated based on the dysregulated signaling pathways and targeted transcriptome, and the result showed that Yinqiao Powder and Pingwei Powder (银翘散合平胃散, YQPWP) ranked first, reversing 91.18% of the dysregulated signaling pathways in macrophages and 100% of the dysregulated signaling pathways in lung epithelial cells. Additionally, YQPWP had the function of scattering wind and clearing heat, resolving toxins and removing dampness in accordance with the pathogenesis of wind-heat with dampness in COVID-19. It was selected as the basic formula, and was further modified and optimized to develop an innovative fomula Qiaobang Zhupi Yin (翘蒡术皮饮, QBZPY) based on expert experience and artificial intelligence in composing formulae. QBZPY can reverse all the dysregulated signaling pathways associated with COVID-19 in macrophages and lung epithelial cells, with the reversing rates of 100%. The chief medicinal of QBZPY, including Lianqiao (Fructus Forsythiae), Xixiancao (Herba Siegesbeckiae) and Niubangzi (Fructus Arctii), can down-regulate multiple signaling pathways related with virus infection, immune response, and epithelial damage. RT-qPCR results indicated that compared with the model group, the QBZPY group down-regulated the mRNA expression of Il1b, tumor necrosis factor (Tnf), Cxcl2, Cxcl10, Ccl2, Nos2 and Ptgs2 induced by LPS in RAW264.7 cells (P<0.05 or P<0.01). ConclusionBased on targeted transcriptome analysis, expert experience in TCM and artificial intelligence, QBZPY has been developed for the treatment of nonsevere COVID-19. The ethanol extract of QBZPY has been found to inhibit mRNA expression of several pro-inflammatory genes in a cellular inflammation model.
8.Study of MMP-13 and TGF-β1 in synovial fluid and P-Smad3 in articular cartilage of patients with knee osteoarthritis of liver-kidney deficiency pattern and pattern of intermingled phlegm and blood stasis
Yuxuan LIU ; Xiangchun LIU ; Jian QI ; Jing CHEN ; Qinzhe LIU ; Qianshun WANG ; Tiancheng LYU ; Dian LAN ; Chao YE
Journal of Beijing University of Traditional Chinese Medicine 2024;47(8):1111-1118
Objective We aimed to compared matrix metalloproteinase-13 (MMP-13) and transforming growth factor-β1 (TGF-β1) in synovial fluid,the phosphorylation level of Smad3 in articular cartilage (P-Smad3),and their correlation with traditional Chinese medicine (TCM) patterns in patients with knee osteoarthritis (KOA) of liver-kidney deficiency pattern and pattern of intermingled phlegm and blood stasis.Methods Using a cross-sectional field investigation method,KOA patients hospitalized in the Orthopedics Department of Dongzhimen Hospital,Beijing University of Chinese Medicine from September 2019 to February 2023 were collected. A total of 112 KOA patients were included,among which 63 cases were diagnosed with liver-kidney deficiency pattern,and 49 cases were diagnosed with pattern of intermingled phlegm and blood stasis. The intensity of knee pain,function,and X-ray imaging result were quantified using the Visual Analogue Scale (VAS),Lysholm Knee Scoring Scale,and Kellgren-Lawrence (K-L) Grading Scale,respectively. The TCM pattern was identified and quantified using a TCM Pattern Scoring Scale. Immunohistochemistry was used to determine the phosphorylation characteristics of Smad3 in articular cartilage,and ELISA was used to measure the contents of MMP-13 and TGF-β1 in synovial fluid. The level characteristics and their correlation with the degree of syndrome were analyzed.Results (i) There was no statistically significant difference in VAS scores,Lysholm scores,and K-L grades between KOA patients with different TCM patterns. (ii) Compared with KOA patients with pattern of intermingled phlegm and blood stasis,patients with pattern of liver-kidney deficiency had higher levels of MMP-13 in synovial fluid and lower levels of TGF-β1 in synovial fluid (P<0.05). (iii) In KOA patients with liver-kidney deficiency pattern,there was a positive correlation between the level of MMP-13 in synovial fluid and the score of TCM pattern (r=0.292,P=0.020),while there was a negative correlation between the level of TGF-β1 in synovial fluid and the score of TCM pattern (r=-0.781,P<0.001). In KOA patients with pattern of intermingled phlegm and blood stasis,there was also a positive correlation between the level of MMP-13 in synovial fluid and the score of TCM pattern (r=0.936,P<0.001). (iv) The mean optical density value of P-Smad3 in articular cartilage was lower in KOA patients with liver-kidney deficiency pattern than in pattern of intermingled phlegm and blood stasis (P<0.05).Conclusion KOA patients with liver-kidney deficiency pattern or pattern of intermingled phlegm and blood stasis have different levels of TGF-β1 and MMP-13 in synovial fluid,as well as varying degrees of Smad3 phosphorylation in articular cartilage,which is consistent with the analysis of etiology and pathogenesis under different patterns. The levels of TGF-β1 and MMP-13 in synovial fluid of patients with liver-kidney deficiency pattern can reflect the severity of the pattern to a certain extent,and the mechanism may be related to the inhibition of the activation level of the TGF-β/Smad signaling pathway. This study enriches the research content of the material basis of TCM patterns.
9.Significance and role of apprenticeship education in Traditional Chinese Medicine curriculum of western medical institutions
Dan YANG ; Ziman YU ; Yi LIU ; Xiaohu SHI ; Lan JIANG ; Yamin ZHANG ; Guangchan JING ; Qunli WU
Basic & Clinical Medicine 2024;44(4):582-584
The apprenticeship education of Traditional Chinese medicine(TCM)is an important pathway for the cultivation of talents in TCM education.The combination of institutional education and apprenticeship education is considered to be the most suitable educational model that aligns with the inherent characteristics of TCM education.The current status of TCM education in western medical institutions and the main challenges include the difficulty in transitioning between western and Chinese medical reasoning and limited clinical internship hours for TCM.The strengths and features of TCM apprenticeship education lie in cultural heritage,classical teachings,mentorship,practice orientation and personalized education.Therefore,integration of TCM apprenticeship education and clinical internships for western medical students represents a new educational model for medical undergraduates.
10.Bioequivalence study of domestic mirabegron sustained release tablets in Chinese healthy subjects
Xiao-Lin DU ; Tian-Mei LIU ; Yi-Jing ZHU ; Xiao LI ; Xiao-Lan YONG
The Chinese Journal of Clinical Pharmacology 2024;40(15):2246-2250
Objective To evaluate the bioequivalence of test and reference mirabegron sustained release tablets under fasting/postprandial conditions.Methods A randomized,open,single dose,four cycle,two sequence,self-crossover trial design was used.32 healthy subjects respectively for fasting and fed study were enrolled,who were randomized to a single oral dose of 50 mg of either reference or test preparation of mirabegron sustained release tablets.The plasma concentration of mirabegron in healthy subjects after oral administration was detected by liquid chromatography tandem mass spectrometry,and Phoenix WinNonlin 8.2 software was used to calculate pharmacokinetic parameters and perform bioequivalence analysis.Results Subjects received a single oral dose of the reference and test formulations of mirabegron.The main pharmacokinetic parameters of mirabegron in the fasting study were asfollows:Cmaxwere(43.91±21.40)and(40.82±24.94)ng·mL-1,AUC0-t were(464.45±149.01)and(452.67±157.63)h·ng·mL-1,AUC0-∞were(501.64±162.39)and(488.70±173.81)h·ng·mL-1.The main pharmacokinetic parameters of mirabegron in the fed study were as follows:Cmax were(16.90±8.94)and(16.90±9.66)ng·mL-1,AUC0-t were(247.09±82.53)and(243.22±78.20)h·ng·mL-1,AUC0-∞ were(269.58±86.52)and(265.66±81.89)h·ng·mL-1.The 90%confidence intervals for the geometric means of Cmax,AUC0-t and AUC0-∞ for reference and test preparations in the fasting and fed groups were in the range of 80.00%to 125.00%.Conclusions The test and reference formulation of mirabegron sustained release tablets were bioeguivalence.

Result Analysis
Print
Save
E-mail