1.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
2.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Association between QRS voltages and amyloid burden in patients with cardiac amyloidosis.
Jing-Hui LI ; Changcheng LI ; Yucong ZHENG ; Kai YANG ; Yan HUANG ; Huixin ZHANG ; Xianmei LI ; Xiuyu CHEN ; Linlin DAI ; Tian LAN ; Yang SUN ; Minjie LU ; Shihua ZHAO
Chinese Medical Journal 2024;137(3):365-367
7.Effect of moxibustion on PTEN/mTOR signalling pathway and myocardial fibrosis in rats with chronic heart failure
Tiantian GONG ; Bing GAO ; Ling ZHU ; Lan LI ; Yanping ZONG ; Jing HU ; Jing WANG
Journal of Beijing University of Traditional Chinese Medicine 2024;47(4):562-569
Objective To observe the effects of moxibustion on myocardial pathological morphology,α-smooth muscle actin(α-SMA)and chromosome 10 deletion phosphatase and tensin homologous protein(PTEN)/mammalian target of rapamycin(mTOR)signalling pathway in rats with chronic heart failure(CHF),and to explore the possible mechanism of moxibustion in attenuating myocardial fibrosis in rats with CHF.Methods According to the random number table method,60 male SD rats were divided into the normal group(n=10)and the surgery group(n=50),and the rats in the surgery group were ligated the left coronary artery to replicate the CHF model.According to the random number table method,40 successfully modelled rats were divided into the model group,the moxibustion group,the bpV(phen)group,and the moxibustion+bpV(phen)group,with 10 rats in each group.The normal and model groups were not given any intervention;in the moxibustion group,customized moxa sticks were used to moxibrate the bilateral"Feishu"(BL13)and"Xinshu"(BL15)on the back of the rats for 30 min at each point once a day;the bpV(phen)group was injected intraperitoneally with the bpV(phen)solution(0.15 mg/kg)twice a week;the moxibustion+bpV(phen)group was based on the bpV(phen)group,and moxibustion was applied according to the moxibustion group.The intervention was carried out for 4 weeks.The general conditions of rats,such as feeding and activity were observed;HE staining was used to detect morphological changes of the cardiomyocytes;Masson staining was used to detect myocardial fibrosis;the cardiac echocardiography was used to detect ejection fraction(EF)and fractional shortening(FS);real-time PCR was used to detect the mRNA expressions of PTEN and mTOR in the cardiac muscle tissues;protein expressions of PTEN,mTOR,α-SMA in rat myocardial tissue were detected by Western blotting.Results Compared with the normal group,rats in the model group had altered cardiomyocyte morphology,severe damage to myocardial fiber structure,significantly lower EF,FS,and mTOR mRNA and protein expressions,and significantly higher PTEN,α-SMA protein expressions and PTEN mRNA expression(P<0.05).Compared with the model group,myocardial ultrastructural damage was attenuated in the moxibustion group,bpV(phen)group,and moxibustion+ bpV(phen)group,and EF,FS,and mRNA and protein expressions of mTOR were significantly higher,α-SMA protein expression was significantly lower,and mRNA and protein expressions of PTEN were significantly lower(P<0.05).Compared with the moxibustion+bpV(phen)group,myocardial ultrastructural damage was worsen in the moxibustion and bpV(phen)groups,with significantly lower EF,FS,and mRNA and protein expressions of mTOR,significantly higher α-SMA protein expression,and significantly higher mRNA and protein expressions of PTEN(P<0.05).Conclusion Moxibustion can improve the pathological morphology and function of cardiomyocytes and attenuate myocardial fibrosis in rats with CHF,and its mechanism may be related to the down-regulation of PTEN expression,and then the up-regulation of mTOR expression.
8.Excavation and evaluation of tocilizumab and infliximab for adverse drug event signals among children
Yue TAN ; Ning-Ning GE ; Jing PENG ; Wen-Shuang QIU ; Xin ZHANG ; Lan-Fang LI
The Chinese Journal of Clinical Pharmacology 2024;40(5):732-736
Objective To analyze the risk of adverse drug events in pediatric clinical applications of tocilizumab versus inflixima.Methods Adverse event(AE)reporting data for tocilizumab versus infliximab in the U.S.Food and Drug Administration Adverse Event Reporting System database for the pediatric population from Q1 2013 to Q1 2023 were collected.AE risk signal mining was performed using the reporting odds ratio(ROR)method and the proportional reporting ratio(PRR)method.AEs were also classified and statistically analyzed according to the preferred system organ classification and preferred terminology(PT)of the International Dictionary of Medical Terminology.Results Data were extracted and cleaned to include 1 052 AE reports with 198 positive PT signals for tocilizumab as the suspected drug and 9 1 39 AE reports with 387 positive PT signals for infliximab as the suspected drug.The analyses suggested that the stronger positive risk signals for both drugs were focused on gastrointestinal disorders,infectious and invasive diseases,laboratory tests,musculoskeletal and connective tissue disorders,and blood,vascular,and lymphatic disorders.The risk signals for infliximab were focused on gastrointestinal disorders,infections,and infectious diseases,while the risk signals for tocilizumab were focused on the musculoskeletal muscle system.Conclusion Clinical use of both drugs in children has multi-system effects,tocilizumab may have effects on growth and development,and infliximab has effects on the gastrointestinal tract in children.
9.Bioequivalence study of domestic mirabegron sustained release tablets in Chinese healthy subjects
Xiao-Lin DU ; Tian-Mei LIU ; Yi-Jing ZHU ; Xiao LI ; Xiao-Lan YONG
The Chinese Journal of Clinical Pharmacology 2024;40(15):2246-2250
Objective To evaluate the bioequivalence of test and reference mirabegron sustained release tablets under fasting/postprandial conditions.Methods A randomized,open,single dose,four cycle,two sequence,self-crossover trial design was used.32 healthy subjects respectively for fasting and fed study were enrolled,who were randomized to a single oral dose of 50 mg of either reference or test preparation of mirabegron sustained release tablets.The plasma concentration of mirabegron in healthy subjects after oral administration was detected by liquid chromatography tandem mass spectrometry,and Phoenix WinNonlin 8.2 software was used to calculate pharmacokinetic parameters and perform bioequivalence analysis.Results Subjects received a single oral dose of the reference and test formulations of mirabegron.The main pharmacokinetic parameters of mirabegron in the fasting study were asfollows:Cmaxwere(43.91±21.40)and(40.82±24.94)ng·mL-1,AUC0-t were(464.45±149.01)and(452.67±157.63)h·ng·mL-1,AUC0-∞were(501.64±162.39)and(488.70±173.81)h·ng·mL-1.The main pharmacokinetic parameters of mirabegron in the fed study were as follows:Cmax were(16.90±8.94)and(16.90±9.66)ng·mL-1,AUC0-t were(247.09±82.53)and(243.22±78.20)h·ng·mL-1,AUC0-∞ were(269.58±86.52)and(265.66±81.89)h·ng·mL-1.The 90%confidence intervals for the geometric means of Cmax,AUC0-t and AUC0-∞ for reference and test preparations in the fasting and fed groups were in the range of 80.00%to 125.00%.Conclusions The test and reference formulation of mirabegron sustained release tablets were bioeguivalence.
10.Bioequivalence study of ezetimibe tablets in Chinese healthy subjects
Pei-Yue ZHAO ; Tian-Cai ZHANG ; Yu-Ning ZHANG ; Ya-Fei LI ; Shou-Ren ZHAO ; Jian-Chang HE ; Li-Chun DONG ; Min SUN ; Yan-Jun HU ; Jing LAN ; Wen-Zhong LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2378-2382
Objective To evaluate the bioequivalence and safety of ezetimibe tablets in healthy Chinese subjects.Methods The study was designed as a single-center,randomized,open-label,two-period,two-way crossover,single-dose trail.Subjects who met the enrollment criteria were randomized into fasting administration group and postprandial administration group and received a single oral dose of 10 mg of the subject presparation of ezetimibe tablets or the reference presparation per cycle.The blood concentrations of ezetimibe and ezetimibe-glucuronide conjugate were measured by high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS),and the bioequivalence of the 2 preparations was evaluated using the WinNonlin 7.0 software.Pharmacokinetic parameters were calculated to evaluate the bioequivalence of the 2 preparations.The occurrence of all adverse events was also recorded to evaluate the safety.Results The main pharmacokinetic parameters of total ezetimibe in the plasma of the test and the reference after a single fasted administration:Cmax were(118.79±35.30)and(180.79±51.78)nmol·mL-1;tmax were 1.40 and 1.04 h;t1/2 were(15.33±5.57)and(17.38±7.24)h;AUC0-t were(1 523.90±371.21)and(1 690.99±553.40)nmol·mL-1·h;AUC0-∞ were(1 608.70±441.28),(1 807.15±630.00)nmol·mL-1·h.The main pharmacokinetic parameters of total ezetimibe in plasma of test and reference after a single meal:Cmax were(269.18±82.94)and(273.93±87.78)nmol·mL-1;Tmax were 1.15 and 1.08 h;t1/2 were(22.53±16.33)and(16.02±5.84)h;AUC0_twere(1 463.37±366.03),(1 263.96±271.01)nmol·mL-1·h;AUC0-∞ were(1 639.01±466.53),(1 349.97±281.39)nmol·mL-1·h.The main pharmacokinetic parameters Cmax,AUC0-tand AUC0-∞ of the two preparations were analyzed by variance analysis after logarithmic transformation.In the fasting administration group,the 90%CI of the log-transformed geometric mean ratios were within the bioequivalent range for the remaining parameters in the fasting dosing group,except for the Cmax of ezetimibe and total ezetimibe,which were below the lower bioequivalent range.The Cmax of ezetimibe,ezetimibe-glucuronide,and total ezetimibe in the postprandial dosing group was within the equivalence range,and the 90%CI of the remaining parameters were not within the equivalence range for bioequivalence.Conclusion This test can not determine whether the test preparation and the reference preparation of ezetimibe tablets have bioequivalence,and further clinical trials are needed to verify it.

Result Analysis
Print
Save
E-mail