1.Insights on Peripheral Blood Biomarkers for Parkinson’s Disease
Yu-Meng LI ; Jing-Kai LIU ; Zi-Xuan CHEN ; Yu-Lin DENG
Progress in Biochemistry and Biophysics 2025;52(1):72-87
Parkinson’s disease (PD) is a common neurodegenerative disorder with profound impact on patients’ quality of life and long-term health, and early detection and intervention are particularly critical. In recent years, the search for precise and reliable biomarkers has become one of the key strategies to effectively address the clinical challenges of PD. In this paper, we systematically evaluated potential biomarkers, including proteins, metabolites, epigenetic markers, and exosomes, in the peripheral blood of PD patients. Protein markers are one of the main directions of biomarker research in PD. In particular, α‑synuclein and its phosphorylated form play a key role in the pathological process of PD. It has been shown that aggregation of α-synuclein may be associated with pathologic protein deposition in PD and may be a potential marker for early diagnosis of PD. In terms of metabolites, uric acid, as a metabolite, plays an important role in oxidative stress and neuroprotection in PD. It has been found that changes in uric acid levels may be associated with the onset and progression of PD, showing its potential as an early diagnostic marker. Epigenetic markers, such as DNA methylation modifications and miRNAs, have also attracted much attention in Parkinson’s disease research. Changes in these markers may affect the expression of PD-related genes and have an important impact on the onset and progression of the disease, providing new research perspectives for the early diagnosis of PD. In addition, exosomes, as a potential biomarker carrier for PD, are able to carry a variety of biomolecules involved in intercellular communication and pathological regulation. Studies have shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide a new breakthrough for early diagnosis. It has been shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide new breakthroughs in early diagnosis. In summary, through in-depth evaluation of biomarkers in the peripheral blood of PD patients, this paper demonstrates the important potential of these markers in the early diagnosis of PD and in the study of pathological mechanisms. Future studies will continue to explore the clinical application value of these biomarkers to promote the early detection of PD and individualized treatment strategies.
2.Mechanisms of aryl hydrocarbon receptor in liver diseases
Jing QIN ; Zhilong HE ; Yu LIU ; Kai HU
Journal of Clinical Hepatology 2025;41(9):1943-1948
Aryl hydrocarbon receptor (AhR) plays an important role in the development and progression of liver diseases. This article elaborates on the structure of AhR and its function in liver development and provides a detailed analysis of its molecular mechanisms in diseases such as metabolic associated fatty liver disease, alcoholic liver disease, viral hepatitis, drug-induced liver injury, autoimmune hepatitis, liver cirrhosis, and liver cancer. This article also reviews the research advances in AhR agonists and antagonists and analyzes their potential application prospects in disease treatment. At the same time, it points out that although AhR is a promising therapeutic target, there are still various challenges in its clinical application. It is suggested that future research should focus on developing AhR modulators with high specificity and low toxicity and further explore its mechanism of action in different liver diseases.
3.Proteomic analysis and validation of DNA repair regulation in the process of hepatocellular carcinoma recurrence
Kai CHANG ; Yanyan WANG ; Zhongyong JIANG ; Wei SUN ; Chenxia LIU ; Wanlin NA ; Hongxuan XU ; Jing XIE ; Yuan LIU ; Min CHEN
Journal of Clinical Hepatology 2024;40(2):319-326
ObjectiveTo investigate the role and mechanism of DNA repair regulation in the process of hepatocellular carcinoma (HCC) recurrence. MethodsHCC tissue samples were collected from the patients with recurrence within two years or the patients with a good prognosis after 5 years, and the Tandem Mass Tag-labeled quantification proteomic study was used to analyze the differentially expressed proteins enriched in the four pathways of DNA replication, mismatch repair, base excision repair, and nucleotide excision repair, and the regulatory pathways and targets that play a key role in the process of HCC recurrence were analyzed to predict the possible regulatory mechanisms. The independent samples t-test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsFor the eukaryotic replication complex pathway, there were significant reductions in the protein expression levels of MCM2 (P=0.018), MCM3 (P=0.047), MCM4 (P=0.014), MCM5 (P=0.008), MCM6 (P=0.006), MCM7 (P=0.007), PCNA (P=0.019), RFC4 (P=0.002), RFC5 (P<0.001), and LIG1 (P=0.042); for the nucleotide excision repair pathway, there were significant reductions in the protein expression levels of PCNA (P=0.019), RFC4 (P=0.002), RFC5 (P<0.001), and LIG1 (P=0.042); for the base excision repair pathway, there were significant reductions in the protein expression levels of PCNA (P=0.019) and LIG1 (P=0.042) in the HCC recurrence group; for the mismatch repair pathway, there were significant reductions in the protein expression levels of MSH2 (P=0.026), MSH6 (P=0.006), RFC4 (P=0.002), RFC5 (P<0.001), PCNA (P=0.019), and LIG1 (P=0.042) in recurrent HCC tissue. The differentially expressed proteins were involved in the important components of MCM complex, DNA polymerase complex, ligase LIG1, long patch base shear repair complex (long patch BER), and DNA mismatch repair protein complex. The clinical sample validation analysis of important differentially expressed proteins regulated by DNA repair showed that except for MCM6 with a trend of reduction, the recurrence group also had significant reductions in the relative protein expression levels of MCM5 (P=0.008), MCM7 (P=0.007), RCF4 (P=0.002), RCF5 (P<0.001), and MSH6 (P=0.006). ConclusionThere are significant reductions or deletions of multiple complex protein components in the process of DNA repair during HCC recurrence.
4.Effect of Wedelolactone on Oxidative Injury in HUVECs Via the PI3K/Akt/mTOR Signaling Pathway
Sulian LIU ; Kai XIE ; Dongning YE ; Wenjing LI ; Jie CHEN ; Jing XU
Herald of Medicine 2024;43(2):161-166
Objective To study the protective effect of Wedelolactone(WEL)against inflammatory injury in human umbilical vein endothelial cells(HUVECs)and its molecular mechanism by inducing PI3K/Akt/mTOR.Methods The model of atherosclerosis(AS)oxidative stress injury in HUVECs was induced with 200 μmol·L-1 of hydrogen peroxide for 24 h.The experimental groups were as follows:normal control group,DMSO(dimethyl sulfoxide)group,H2O2 group,and WEL group.MTT was used to measure the cell survival rate of each group;flow cytometry was used to assess intracellular ROS levels;fluorescence microscopy was used to detect the expression of p62 protein;immunoblotting assay was used to determine the protein expression levels for apoptosis-related proteins associated with PI3K/Akt/mTOR signaling pathway and autophagy-related proteins.Results Compared with the H2 O2 group,the HUVEC cell survival rate was significantly inhibited in the WEL group(P<0.05).ROS production was significantly lower,and the protein expressions of SOD1 and p62 were significantly increased in the WEL group as compared to the hydrogen peroxide group.The protein expression of p-mTOR,p-Akt,and p-PI3K was significantly decreased in hydrogen peroxide(P<0.01);In the WEL experiment,p-mTOR,p-Akt,and p-PI3K were increased significantly in the post-injury HUVECs(P<0.01).Conclusion Wedelolactone inhibits HUVECs'autophagy by suppressing H2O2-induced inflammatory damage in HUVECs,which may be related to the fact that WEL promotes the phosphorylation of PI3K,Akt,and mTOR proteins,inhibits autophagy and thus resists oxidative stress damage in HUVECs cells.
5.Synthesis and anti-tumor activity of pyrazole pyrimidine PI3Kγ /δ inhibitors
Mao-qing DENG ; Feng-ming ZOU ; Zi-ping QI ; Chun WANG ; Kai-li LONG ; Qing-wang LIU ; Ao-li WANG ; Jing LIU ; Xiao-fei LIANG
Acta Pharmaceutica Sinica 2024;59(7):2041-2052
PI3K
6.Role of TGF-β/Smads signaling pathway in myocardial fibrosis of heart failure and research status of traditional Chinese medicine intervention
Yao-Hui HUO ; Jing ZHANG ; Li-Rong ZHOU ; Xiao-Gang ZHANG ; Yong-Ze GAO ; Li-Ming LIU ; Kai LIU
The Chinese Journal of Clinical Pharmacology 2024;40(3):444-448
During the progression of heart failure(HF),abnormal transduction of the transforming growth factor-β(TGF-β)/Smads signaling pathway is important mechanism of myocardial fibrosis(MF)in HF.TGF-β,a key factor in MF,is in an overexpression state in the process of MF in HF,and Smads is a major effector downstream of TGF-β.The TGF-β/Smads pathway induces abnormal proliferation of myofibroblasts,aggravates myocardial extracellular matrix deposition,and reduces the ability of the cardiac tissues to resist fibrosis,which plays a complex role in the pathogenesis of MF in HF.Traditional Chinese medicine(TCM)has the efficacy of unequivocal inhibiting myocardial collagen deposition,anti-MF,protecting the myocardium and improving cardiac function in the prevention and treatment of MF in HF and so on,and the TGF-β/Smads pathway is one of the key pathways through which TCM monomers,TCM combinations,and proprietary medicines can exert their cardioprotective effects on the HF.This paper reviews the existing experimental research results of TCM intervening in the TGF-β/Smads pathway for the treatment of MF in HF over the past 10 years,with a view to providing theoretical basis for the prevention and treatment of HF MF well as the development and of new drugs.
7.Effect of Wenyang Huazhuo Tongluo recipe on pulmonary micro vascular injury in mice with scleroderma based on mitophagy
Shuang CHEN ; Kai LI ; Bo BIAN ; Ke-Lei GUO ; Hua BIAN ; Chang LIU ; Jing-Wei XU
The Chinese Journal of Clinical Pharmacology 2024;40(9):1301-1305
Objective To explore the effect of Wenyang Huazhuo Tongluo recipe on pulmonary microvascular injury in mice with scleroderma based on mitophagy.Methods Fifty mice were randomly divided into blank control group(0.9%NaCl,by gavage),control group(0.9%NaCl,by gavage),model group,Wenyang Huazhuo Tongluo recipe group(47mg·kg-1·d-1 Wenyang Huazhuo Tongluo recipe by gavage),positive control group(10 mg·kg-1·d-1 KC7F2 dissolved in phosphate buffer solution intraperitoneal injection),continuous administration for 4 weeks.The expression levels of in vitro membrane translocation enzyme 20(TOMM20),hypoxia inducible factor-1α(HIF-1α),B cell lymphoma-2/adenovirus E1B-19 kDa interacting protein 3(BNIP3),PTEN inducible muscle enzyme protein 1(PINK1)and E3 ubiquitin ligase(Parkin)in lung tissue were detected by immunohistochemistry(IHC).Western blot(WB)was used to detect the expression levels of mitophagy-related proteins(TOMM20,LC3B)and HIF-1α/BNIP3/PINK1/Parkin pathway proteins in pulmonary microvascular endothelial cells.Results The relative content of HIF-1α in microvascular endothelial cells of lung tissue in the control group,model group,Wenyang Huazhuo Tongluo recipe group and positive control group were 0.17±0.02,0.98±0.01,0.66±0.03 and 0.48±0.01;the relative content of BNIP3 were 0.40±0.02,0.74±0.01,0.56±0.01 and 0.60±0.02;the relative content of PINK1 were 0.26±0.04,0.88±0.01,0.65±0.02 and 0.67±0.02;the relative contents of Parkin were 0.33±0.02,0.89±0.01,0.65±0.02 and 0.77±0.02;the relative contents of TOMM20 were 1.10±0.02,0.58±0.01,1.02±0.01 and 0.98±0.03;the relative contents of LC3B-Ⅰ/LC3B-Ⅱ were 0.24±0.01,0.80±0.01,0.53±0.02 and 0.70±0.02,respectively.The content of HIF-1α,BNIP3,PINK1,Parkin and LC3B-Ⅰ/LC3B-Ⅱ in model group was higher than those in control group.Wenyang Huazhuo Tongluo recipe can effectively reduce its content.The content of TOMM20 in the model group was lower than that in control group,and Wenyang Huazhuo Tongluo recipe can effectively increase its content.Conclusion Wenyang Huazhuo Tongluo recipe may inhibit mitophagy and improve SSc pulmonary microvascular injury by increasing TOMM20 and inhibiting the protein expression of LC3B and HIF-1α/BNIP3/PINK1/Parkin signaling pathway.
8.Preliminary Study on Construction Method of Type 1 Diabetes Model in Banna Miniature Pig
Kai LIU ; Yuqi HU ; Yatian GENG ; Wenjie CHENG ; Jing WANG ; Taiyun WEI ; Hongfang ZHAO ; Jiayu LI ; Deling JIAO ; Hongye ZHAO ; Hongjiang WEI
Laboratory Animal and Comparative Medicine 2024;44(4):384-392
Objective To construct a Type 1 diabetes model in miniature pigs and explore postoperative care strategies for effectively prolonging the survival time of the model pigs.Methods Seven Banna miniature pigs were selected for pancreatectomy.Glucose,vitamins,and antibiotics were administered for 3-5 days after surgery to aid recovery.Blood glucose and urine glucose levels were measured twice a day in the morning and evening to adjust insulin supplementation accordingly.The model pigs were observed daily and records were kept,including orexis,psychosis,weakness,skin ulcer,and feces and urine.Body weight was measured weekly until the death of the model animals.Based on the model pigs'condition,glucose injection and Ringer's lactate solution were administered to supplement nutrition and correct electrolyte imbalances.Results All seven Banna miniature pigs showed typical symptoms of diabetes:random blood glucose levels higher than 11.1 mmol/L after pancreatectomy,far exceeding the average blood glucose level of 6.0 mmol/L in normal pigs;positive urine glucose;and progressive weight loss.These features indicated the successful construction of Type 1 diabetes model.Additionally,Type 1 diabetic pigs that survived more than 8 weeks showed progressive hair loss and skin ulceration.Euthanasia was performed on model pigs when they were unable to stand or even eat independently,and pathological examination and HE staining were conducted on tissues collected from affected organs such as the liver,kidneys,and skin.Pathological sections revealed liver congestion,massive glycogen accumulation,ballooning degeneration of hepatocytes,and progressive liver fibrosis,along with glomerular congestion,vacuolar degeneration in renal tubular epithelial cells,proteinuria,dermal congestion,thinning of vascular walls,and varying degrees of parakeratosis and dyskeratosis in the liver,kidneys,and skin tissues due to prolonged hyperglycemia.The average survival time of the constructed Banna miniature pig diabetes model was 44 d,with a maximum survival time of 121 d.Conclusion Type 1 diabetes model can be constructed successfully in Banna miniature pigs through pancreatectomy.With meticulous postoperative care,a long-term Type 1 diabetes model with significant complications can be achieved,providing a stable large-animal model for Type 1 diabetes treatment strategies.
9.Efficacy and mechanism of astragaloside Ⅳ derivatives on chronic heart failure in mice
Kai JING ; Cirong YANG ; Zhen ZHANG ; Yibei ZANG ; Xia LIU
Journal of Pharmaceutical Practice and Service 2024;42(5):190-197
Objective To evaluate the pharmacodynamics of astragaloside Ⅳ derivatives for chronic heart failure,screen the candidate compounds and preliminarily explore the mechanism of the candidate compound HHQ16 against heart failure.Methods Chronic heart failure was induced by left anterior descending artery ligation in C57BL/6 mice for 4 weeks,and the mice were divided into 4 groups,including sham group,model group,positive control captopril group,and astragaloside Ⅳ derivatives group.After continuous intragastric administration for four weeks,the cardiac function was detected by echocardiography,and the optimal astragaloside Ⅳ derivative HHQ16 was selected for the treatment of heart failure.The preliminary mechanism for HHQ16 was further explored.The size of heart was observed by gross morphology;pathological changes were observed by HE staining;collagen deposition in the myocardium was observed by Masson staining;protein levels of myocardial fibrosis indexes COL1,COL3,and αSMA were detected by immunohistochemical staining,and mRNA levels of myocardial fibrosis indexes COL1,COL3,αSMA,and TGF-β1 were determined by qPCR technique.Results All astragaloside Ⅳ derivatives significantly improved cardiac function with increasing LVEF and LVFS,of which HHQ16 was the optimal compound.Compared with the model group,the heart volume of HHQ16 group was significantly reduced;myocardial hypertrophy was reduced;collagen deposition in myocardial tissues was reduced;and myocardial fibrosis indexes,COL1,COL3,αSMA and TGF-β1 mRNA levels,as well as the protein levels of COL1,COL3 and αSMA were significantly reduced.Conclusion HHQ16 is an optimal astragaloside Ⅳ derivatives for the treatment of chronic heart failure in mice,which could improve cardiac function by improving myocardial remodeling,and inhibit myocardial hypertrophy and myocardial fibrosis.
10.LONP1 ameliorates liver injury and improves gluconeogenesis dysfunction in acute-on-chronic liver failure
Muchen WU ; Jing WU ; Kai LIU ; Minjie JIANG ; Fang XIE ; Xuehong YIN ; Jushan WU ; Qinghua MENG
Chinese Medical Journal 2024;137(2):190-199
Background::Acute-on-chronic liver failure (ACLF) is a severe liver disease with complex pathogenesis. Clinical hypoglycemia is common in patients with ACLF and often predicts a worse prognosis. Accumulating evidence suggests that glucose metabolic disturbance, especially gluconeogenesis dysfunction, plays a critical role in the disease progression of ACLF. Lon protease-1 (LONP1) is a novel mediator of energy and glucose metabolism. However, whether gluconeogenesis is a potential mechanism through which LONP1 modulates ACLF remains unknown.Methods::In this study, we collected liver tissues from ACLF patients, established an ACLF mouse model with carbon tetrachloride (CCl 4), lipopolysaccharide (LPS), and D-galactose (D-gal), and constructed an in vitro hypoxia and hyperammonemia-triggered hepatocyte injury model. LONP1 overexpression and knockdown adenovirus were used to assess the protective effect of LONP1 on liver injury and gluconeogenesis regulation. Liver histopathology, biochemical index, mitochondrial morphology, cell viability and apoptosis, and the expression and activity of key gluconeogenic enzymes were detected to explore the underlying protective mechanisms of LONP1 in ACLF. Results::We found that LONP1 and the expressions of gluconeogenic enzymes were downregulated in clinical ACLF liver tissues. Furthermore, LONP1 overexpression remarkably attenuated liver injury, which was characterized by improved liver histopathological lesions and decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in ACLF mice. Moreover, mitochondrial morphology was improved upon overexpression of LONP1. Meanwhile, the expression and activity of the key gluconeogenic enzymes were restored by LONP1 overexpression. Similarly, the hepatoprotective effect was also observed in the hepatocyte injury model, as evidenced by improved cell viability, reduced cell apoptosis, and improved gluconeogenesis level and activity, while LONP1 knockdown worsened liver injury and gluconeogenesis disorders.Conclusion::We demonstrated that gluconeogenesis dysfunction exists in ACLF, and LONP1 could ameliorate liver injury and improve gluconeogenic dysfunction, which would provide a promising therapeutic target for patients with ACLF.

Result Analysis
Print
Save
E-mail