1.Renshen Yangrongtang Alleviating Myelosuppression by Reducing Neutrophil Extracellular Traps Through Regulating ROS/MPO
Jing ZHANG ; Rongxing LIU ; Jinhao ZENG ; Qing NIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):39-46
ObjectiveTo investigate the potential mechanism of Renshen Yangrongtang in alleviating myelosuppression by regulating the expression of reactive oxygen species (ROS), myeloperoxidase (MPO), and neutrophil extracellular traps (NETs). MethodsK562 cells were divided into blank group, etoposide group (40 μmol·L-1), and etoposide+Renshen Yangrongtang freeze-dried powder groups with low-, medium-, and high-dose (2, 4, 8 g·L-1). Liquid chromatography-mass spectrometry (LC-MS) was used to determine the freeze-dried powder of Renshen Yangrongtang. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect ROS, MPO, and NETs expression in each group. Western blot analysis was performed to assess intracellular MPO and NE expressions. Twenty 8-week-old male mice were randomly divided into blank group, etoposide group (100 mg·kg-1), and etoposide + Renshen Yangrongtang groups with low-, medium-, and high-dose (0.1, 0.5, 2.0 g·kg-1). Except for the blank group that received PBS via gavage at room temperature, and the etoposide group that received an intraperitoneal injection for 3 days, the remaining groups received gavage of Renshen Yangrongtang for 14 consecutive days after 3 days of etoposide administration. The peripheral blood related indicators were detected through an automated hematology analyzer; Western blot analysis was performed to assess MPO and neutrophil elastase (NE) expression changes in the marrow cells of mice. Enzyme-linked immunosorbent assay (ELISA) was used to detect ROS, MPO, and NETs changes in the marrow cells of mice. MPO and NE on femur bones were stained through immunohistochemistry. Scanning electron microscopy was used to analyze the structural changes of NETs in the marrow cells of mice after drug administration. ResultsLC-MS results showed that the freeze-dried powder of Renshen Yangrongtang contained complete technical materials such as Chinese angelica, Astragalus mongholicus, and ginseng. In K562 cells, compared with the etoposide group, ELISA results indicated that the concentrations of MPO, ROS, and NETs in the etoposide + Renshen Yangrongtang medium and high-dose groups were decreased (P<0.05, P<0.01), and Western blot data showed that the etoposide high-dose group significantly reduced the expression of MPO and NE protein in K562 cells (P<0.05, P<0.01). In vivo, compared with the etoposide group, the number of RBC, WBC, and PLT in the etoposide+Renshen Yangrongtang high-dose group increased significantly (P<0.05). ELISA results suggested that in the etoposide+Renshen Yangrongtang low-, medium-, and high-dose groups, the concentration of mice ROS, MPO, and NETs significantly decreased (P<0.05, P<0.01). Western blot results revealed that compared with the etoposide group, the expressions of MPO and NE in the marrow cells of mice in the etoposide + Renshen Yangrongtang low-, medium- and high-dose groups were significantly decreased (P<0.05, P<0.01). Scanning electron microscopy observations revealed that Renshen Yangrongtang reduced the NETs structure generation in the marrow cells of mice after the influence of etoposide. ConclusionRenshen Yangrongtang can alleviate etoposide-induced myelosuppression by inhibiting ROS/MPO and reducing the formation of intracellular NETs.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.Correlation analysis of serum SIRT1 and Vasostatin-2 content with pathological changes in diabetic retinopathy patients
Qing DONG ; Bo LIU ; Xingyuan BAO ; Jing WEI
International Eye Science 2025;25(6):962-967
AIM: To investigate the correlation of serum Silent mating-type information regulation 2 homolog 1(SIRT1)and Vasostatin-2 content with pathological changes in diabetic retinopathy(DR)patients.METHODS: A total of 104 DR patients(104 eyes)admitted to our hospital from April 2021 to April 2024 were included as the DR group. According to different disease stages, they were assigned into a non-proliferative DR(NPDR)group of 44 cases(44 eyes)and a proliferative DR(PDR)group of 60 cases(60 eyes). Meantime, 104 patients(104 eyes)with simple diabetes were treated as non-DR group. ELISA was applied to detect the levels of SIRT1 and Vasostatin-2 in serum. The diagnostic value of serum SIRT1 and Vasostatin 2 in DR was analyzed by ROC curve. Multivariate Logistic regression was applied to analyze the factors that affected the occurrence of DR. Pearson correlation was applied to analyze the relationship between the levels of SIRT1 and Vasostatin-2 in the serum of DR patients and angiogenesis indicators(VEGF, Ang-2).RESULTS: Compared with the non-DR group, the levels of SIRT1 and Vasostatin-2 in the serum of the DR group were significantly decreased(P<0.05). Compared with the NPDR group, the levels of SIRT1 and Vasostatin-2 in the serum of the PDR group were significantly decreased(P<0.05). Compared with the non-DR group, the levels of VEGF and Ang-2 in the serum of the DR group were obviously higher(P<0.05). Compared with the single detection of serum SIRT1 and Vasostatin-2 levels, combined detection significantly increased the AUC in the diagnosis of DR(Z=4.180, 5.128, all P<0.05). Multivariate Logistic regression analysis showed that HOMA-IR(OR=3.455), fasting blood glucose(OR=1.467), SIRT1(OR=0.836), Vasostatin-2(OR=0.767), VEGF(OR=2.564), and Ang-2(OR=1.834)levels were the influencing factors on the occurrence of DR(all P<0.05). Pearson correlation analysis showed that the levels of SIRT1 and Vasostatin-2 in the serum of DR patients were negatively correlated with VEGF and Ang-2(rSIRT1 vs VEGF=-0.395, rSIRT1 vs Ang-2=-0.474, rVasostatin-2 vs VEGF=-0.323, rVasostatin-2 vs Ang-2=-0.583, all P<0.001).CONCLUSION: The abnormal decrease of serum SIRT1 and Vasostatin 2 levels in DR patients is closely related to the stage of DR lesions and angiogenesis.
4.Network pharmacology and molecular docking explore mechanism of Croci Stigma in treating immune checkpoint inhibitor-associated myocarditis.
Jing YAN ; Qing-Qing CAI ; Yu LI ; Hua-Min ZHANG ; Fang-Bo ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2515-2525
This study investigated the mechanism of Croci Stigma in treating immune checkpoint inhibitor(ICI)-associated myocarditis based on network pharmacology and molecular docking. Network pharmacology was employed to screen the active ingredients and molecular targets of Croci Stigma in treating ICI-associated myocarditis. The "drug-ingredient-target-disease" network and protein-protein interaction network were constructed to screen the key ingredients and core targets. Gene Ontology functional enrichment analysis showed that the mechanism was related to the regulation of inflammation and apoptosis. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the treatment was related to the advanced glycation end product-receptor for advanced glycation end products(AGE-RAGE) signaling pathway. Molecular docking result showed that crocins had close associations with RAC-alpha serine/threonine-protein kinase 1(AKT1), signal transducer and activator of transcription 3, and matrix metalloproteinase 9. Crocins were then selected as the therapeutic drug. The mouse model of ICI-associated myocarditis was established by subcutaneous injection of porcine cardiac myosin combined with intraperitoneal injection of pembrolizumab. The results suggested that Croci Stigma reduced the spleen index but had no effect on the heart index. The electrocardiogram showed that Croci Stigma increased the heart rate and shortened PR and QRS intervals. Echocardiographic data indicated that Croci Stigma increased the left ventricular stroke volume, cardiac output, ejection fraction, and fractional shortening. Hematoxylin-eosin and Masson staining results showed that Croci Stigma decreased the number of inflammatory cells infiltrating in the myocardium and alleviated myocardial fibrosis. Enzyme-linked immunosorbent assay results showed that Croci Stigma decreased the serum levels of inflammatory cytokines including tumor necrosis factor-alpha, interleukin-6, interleukin-12, and regulated on activation, normal T-cell expressed and secreted and lowered the levels of creatine kinase and creatine kinase isoenzyme MB. Biochemical data suggested that Croci Stigma inhibited the activities of superoxide dismutase and lactate dehydrogenase. Western blot result showed that Croci Stigma regulated the expression of myocardial AKT. The findings demonstrate that Croci Stigma may regulate AKT expression to effectively protect the cardiac tissue from ICI-associated myocarditis through antagonizing immune responses and inflammation, inhibiting oxidative stress, alleviating cardiac fibrosis, relieving cardiac block, and improving the cardiac function.
Animals
;
Molecular Docking Simulation
;
Myocarditis/metabolism*
;
Immune Checkpoint Inhibitors/adverse effects*
;
Mice
;
Network Pharmacology
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Humans
;
Protein Interaction Maps/drug effects*
5.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*
6.Standardization of refining process of Hongsheng Dan and change law of substances.
Jing-Jing YANG ; Qing-Xia GAN ; Yu YANG ; Hou-Bo ZHOU ; Can LIU ; Jin WANG ; Qin-Wan HUANG
China Journal of Chinese Materia Medica 2025;50(10):2695-2703
Hongsheng Dan, historically referred to as the "surgical sacred medicine", is at risk of losing its refining technology in contemporary times. This study aimed to preserve and innovate this traditional non-heritage refining technology. By utilizing the analytic hierarchy process(AHP) combined with the entropy weight method, this study established the hierarchical structure model of refining process of Hongsheng Dan and conducted a single factor experiment and an L_9(3~4) orthogonal experiment to optimize the refining method of Hongsheng Dan. Additionally, the study employed infrared thermal imaging to monitor temperature variations of Hongsheng Dan during the refining process. The optimized refining parameters for Hongsheng Dan were established as follows: a slow fire temperature of 175 ℃ with a duration of 30 minutes, a strong fire temperature of 270 ℃ with a duration of 60 minutes, and a tail fire temperature of 180 ℃ with a duration of 15 minutes. The stability and feasibility of this optimized process were confirmed through validation tests. The research focused on the material transformation of Hongsheng Dan, starting from the material changes during the refining process of Hongsheng Dan and the synthesis of mercuric oxide from nitric acid. The study investigated elemental transformations, physical phase changes, and alterations in thermal properties. 78.98% of the mercury in Hongsheng Dan and 80.21% of the mercury in mercuric oxide from nitric acid were retained. The diffraction peak intensity of the(011) crystal plane of Hongsheng Dan was highest at approximately 30.07°, indicating that the(011) crystal plane had a preferred crystalline orientation. Furthermore, the temperature range for the alteration in thermal properties during the refining process of Hongsheng Dan was found to be between 80 ℃ and 130 ℃. This research not only optimized the refining technology of Hongsheng Dan but also pioneered the application of infrared thermal imaging to study temperature changes throughout the refining process. By exploring the material transformation patterns of Hongsheng Dan and the synthesis of mercuric oxide from nitric acid, the study provided technical support for the preservation and innovation of Hongsheng Dan.
Drugs, Chinese Herbal/standards*
;
Temperature
7.Research progress in pharmacological activities and pharmacokinetics of geniposidic acid.
Zi-Wei LI ; Sheng-Lan QI ; Qing-Guang ZHANG ; Ling CHEN ; Jing HU ; Guang-Bo GE ; Feng HUANG
China Journal of Chinese Materia Medica 2025;50(13):3679-3691
Geniposidic acid(GA), a natural iridoid, exists in the roots, stems, leaves, flowers, bark, fruits, and seeds of medicinal plants of Rubiaceae, Eucommiaceae, and Plantaginaceae. Modern pharmacological studies have revealed that GA has multiple pharmacological activities, including organ-protective, anti-inflammatory, antioxidative, anti-osteoporosis, anti-neurodegenerative, and anti-cardiovascular effects. GA can enhance cell/organism defenses by upregulating key anti-inflammatory and antioxidant cytokines, while downregulating key node proteins in pro-inflammatory signaling pathways such as AhR and TLR4/MyD88, thereby exerting pharmacological effects such as organ protection. Pharmacokinetic investigations have suggested that after oral administration, GA can be distributed in multiple organs(kidney, liver, heart, spleen, lung, etc.). In addition, the pharmacokinetic behavior of GA could be significantly altered under disease conditions, as demonstrated by a marked increase in systematic exposure. This article comprehensively summarizes the reported pharmacological activities and mechanisms and systematically analyzes the pharmacokinetic characteristics and key parameters of GA, with the aim of providing a theoretical basis and scientific reference for the precise clinical application of GA-related Chinese patent medicines, as well as for the investigation and development of innovative drugs based on GA.
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Iridoid Glucosides/chemistry*
;
Plants, Medicinal/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
8.Effect and mechanism of Liujunzi Pills on gut microbiota of rats with spleen Qi deficiency syndrome.
Tao ZHANG ; Nian CHEN ; Qin-Yao JIA ; Xiao-Xia LEI ; Jie WANG ; Jia-Qing ZHAO ; Ying WEI ; Jing WEN
China Journal of Chinese Materia Medica 2025;50(15):4333-4341
This article aims to explore the effect and mechanism of Liujunzi Pills on the intestinal microbiota of rats with spleen Qi deficiency syndrome. The raw Rhei Radix et Rhizoma water extract(1 g·mL~(-1)) was used to prepare spleen Qi deficiency rat models. A total of 44 SD male rats were randomly divided into a control group, a model group, Liujunzi Pills groups at high(3.24 g·kg~(-1)), medium(1.62 g·kg~(-1)), low(0.81 g·kg~(-1)) doses, and Shenling Baizhu San(2.50 g·kg~(-1)) group. The drug effect was evaluated by observing the following aspects: spleen index, fecal water content, body weight, and intestinal propulsion index. Gut microbiota analysis and 16S rRNA gene sequencing were conducted on feces. Enzyme-linked immunosorbent assay(ELISA) and UV spectrophotometry were used to detect interleukin-1β(IL-1β) and adenosine triphosphate(ATP) levels in small intestine tissues. Hematoxylin-eosin staining and transmission electron microscopy were employed to observe changes in intestinal pathology and microstructure. The results show that, compared with the control group, fecal moisture content is significantly increased while spleen index, body weight, and intestinal propulsion index are significantly reduced in rats of the model group, indicating the successful establishment of the model. The above symptoms can be improved by both Shenling Baizhu San and Liujunzi Pills. Compared with the control group, in the model group, the gut microbiota abundance is changed with an unbalanced development: the abundance of beneficial bacteria within the Bacteroidetes phylum is reduced, accompanied by a significantly decreased Shannon index, and reduced signal levels of nicotinamide adenine dinucleotide phosphate(NADPH)-related enzymes relevant to mitochondria. However, Liujunzi Pills and Shenling Baizhu San can significantly improve the Bacteroidetes phylum abundance in gut microbiota, microbial diversity, and NADPH activity in the model group. Additionally, compared with the control group, the ATP level is decreased and the IL-1β level is increased in small intestinal tissues of the model group, with shorter small intestinal epithelial villi and decreased mitochondrial number. The above symptoms can be improved by Liujunzi Pills and Shenling Baizhu San. In conclusion, Liujunzi Pills can treat spleen Qi deficiency syndrome by enhancing mitochondrial function to regulate gut microbiota balance and diversity.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Qi
;
Spleen/metabolism*
;
Splenic Diseases/metabolism*
;
Humans
;
Interleukin-1beta/genetics*
;
Bacteria/drug effects*
;
Feces/microbiology*
;
Adenosine Triphosphate/metabolism*
9.Differences in intestinal absorption characteristics of Rubus multibracteatus extract in normal and inflammatory pain model rats by in-vitro everted intestine sac method.
Ming-Li BAO ; Qing ZHANG ; Yang JIN ; Yi CHEN ; Jian-Qing PENG ; Si-Ying CHEN ; Zhi-Jie MA ; Jian LIAO ; Jing HUANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2025;50(16):4690-4704
This study compared the differences in intestinal absorption characteristics of eleven active components in Rubus multibracteatus(RM) extract(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, epicatechin, catechin, xanthotoxin, p-coumaric acid, caffeic acid, and apigenin-7-O-glucuronide) between normal rats and inflammatory pain model rats using the in-vitro everted intestinal sac model. The RM extract was administered at absorption concentrations of 25.0, 50.0, and 100.0 mg·mL~(-1). The contents of the eleven components in intestinal absorption solution samples were quantified by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), and their cumulative absorption(Q) and absorption rate constant(K_a) were calculated to evaluate the absorption characteristics of these components in normal rats and inflammatory pain model rats. The results show that except for catechin, epicatechin, and caffeic acid, the cumulative absorption-time curves of the other eight components(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, xanthotoxin, p-coumaric acid, and apigenin-7-O-glucuronide) exhibit an upward trend without saturation, with correlation coefficients(R~2) all > 0.9, indicating linear absorption. However, the overall absorption of all components is not dose-dependent with increasing concentration, suggesting that their absorption mechanisms are not solely passive diffusion. In both normal and model rats, the jejunum shows the highest absorption for all components except xanthotoxin. The overall absorption of seven components(excluding protocatechuic acid, caffeic acid, apigenin-7-O-glucuronide, and luteoloside) in normal rats is better than that in model rats across all intestinal segments. These findings indicate that the pathological state of inflammatory pain alters the intestinal absorption of RM extract, and its mechanism needs further investigation.
Animals
;
Rats
;
Intestinal Absorption/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/metabolism*
;
Disease Models, Animal
;
Pain/metabolism*
;
Intestines/drug effects*
;
Intestinal Mucosa/metabolism*
10.Quality evaluation of Xinjiang Rehmannia glutinosa and Rehmannia glutinosa based on fingerprint and multi-component quantification combined with chemical pattern recognition.
Pan-Ying REN ; Wei ZHANG ; Xue LIU ; Juan ZHANG ; Cheng-Fu SU ; Hai-Yan GONG ; Chun-Jing YANG ; Jing-Wei LEI ; Su-Qing ZHI ; Cai-Xia XIE
China Journal of Chinese Materia Medica 2025;50(16):4630-4640
The differences in chemical quality characteristics between Xinjiang Rehmannia glutinosa and R. glutinosa were analyzed to provide a theoretical basis for the introduction and quality control of R. glutinosa. In this study, the high performance liquid chromatography(HPLC) fingerprints of 6 batches of Xinjiang R. glutinosa and 10 batches of R. glutinosa samples were established. The content of iridoid glycosides, phenylethanoid glycosides, monosaccharides, oligosaccharides, and polysaccharides in Xinjiang R. glutinosa and R. glutinosa was determined by high performance liquid chromatography-diode array detection(HPLC-DAD), high performance liquid chromatography-evaporative light scattering detection(HPLC-ELSD), and ultraviolet-visible spectroscopy(UV-Vis). The determination results were analyzed with by chemical pattern recognition and entropy weight TOPSIS method. The results showed that there were 19 common peaks in the HPLC fingerprints of the 16 batches of R. glutinosa, and catalpol, aucubin, rehmannioside D, rehmannioside A, hydroxytyrosol, leonuride, salidroside, cistanoside A, and verbascoside were identified. Hierarchical cluster analysis(HCA) and principal component analysis(PCA) showed that Qinyang R. glutinosa, Mengzhou R. glutinosa, and Xinjiang R. glutinosa were grouped into three different categories, and eight common components causing the chemical quality difference between Xinjiang R. glutinosa and R. glutinosa in Mengzhou and Qinyang of Henan province were screened out by orthogonal partial least squares discriminant analysis(OPLS-DA). The results of content determination showed that there were glucose, sucrose, raffinose, stachyose, polysaccharides, and nine glycosides in Xinjiang R. glutinosa and R. glutinosa samples, and the content of catalpol, rehmannioside A, leonuride, cistanoside A, verbascoside, sucrose, and glucose was significantly different between Xinjiang R. glutinosa and R. glutinosa. The analysis with entropy weight TOPSIS method showed that the comprehensive quality of R. glutinosa in Mengzhou and Qinyang of Henan province was better than that of Xinjiang R. glutinosa. In conclusion, the types of main chemical components of R. glutinosa and Xinjiang R. glutinosa were the same, but their content was different. The chemical quality of R. glutinosa was better than Xinjiang R. glutinosa, and other components in R. glutinosa from two producing areas and their effects need further study.
Rehmannia/classification*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Quality Control

Result Analysis
Print
Save
E-mail